98%
921
2 minutes
20
This study was initiated as a component of a larger undertaking designed to study bone healing in microgravity aboard the International Space Station (ISS). Spaceflight experimentation introduces multiple challenges not seen in ground studies, especially with regard to physical space, limited resources, and inability to easily reproduce results. Together, these can lead to diminished statistical power and increased risk of failure. It is because of the limited space, and need for improved statistical power by increasing sample size over historical numbers, NASA studies involving mice require housing mice at densities higher than recommended in the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011). All previous NASA missions in which mice were co-housed, involved female mice; however, in our spaceflight studies examining bone healing, male mice are required for optimal experimentation. Additionally, the logistics associated with spaceflight hardware and our study design necessitated variation of density and cohort make up during the experiment. This required the development of a new method to successfully co-house male mice while varying mouse density and hierarchical structure. For this experiment, male mice in an experimental housing schematic of variable density (Spaceflight Correlate) analogous to previously established NASA spaceflight studies was compared to a standard ground based housing schematic (Normal Density Controls) throughout the experimental timeline. We hypothesized that mice in the Spaceflight Correlate group would show no significant difference in activity, aggression, or stress when compared to Normal Density Controls. Activity and aggression were assessed using a novel activity scoring system (based on prior literature, validated in-house) and stress was assessed via body weights, organ weights, and veterinary assessment. No significant differences were detected between the Spaceflight Correlate group and the Normal Density Controls in activity, aggression, body weight, or organ weight, which was confirmed by veterinary assessments. Completion of this study allowed for clearance by NASA of our bone healing experiments aboard the ISS, and our experiment was successfully launched February 19, 2017 on SpaceX CRS-10.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196723 | PMC |
http://dx.doi.org/10.1016/j.lssr.2018.03.002 | DOI Listing |
Lancet Planet Health
September 2025
Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
Rift Valley fever (RVF), a zoonotic mosquito-borne viral disease with erratic occurrence and complex epidemiology, results in substantial costs to veterinary and public health and national economies. Since 1985, RVF virus (RVFV) epidemiology has focused on epidemics triggered by flood-induced emergence of transovarially infected mosquitoes, following an interepidemic period during which RVFV persists primarily in floodwater Aedes spp mosquito eggs, with potential for low-level interepidemic circulation. In this Personal View, we challenge this classic framework of RVFV epidemiology, presenting instead a spectrum of RVFV dynamics ranging from epidemic to hyperendemic.
View Article and Find Full Text PDFCell Stem Cell
September 2025
Sanford Stem Cell Institute Integrated Space Stem Cell Orbital Research (ISSCOR) Center, Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA. Electronic address:
Human hematopoietic stem and progenitor cell (HSPC) fitness declines following exposure to stressors that reduce survival, dormancy, telomere maintenance, and self-renewal, thereby accelerating aging. While previous National Aeronautics and Space Administration (NASA) research revealed immune dysfunction in low-earth orbit (LEO), the impact of spaceflight on human HSPC aging had not been studied. To study HSPC aging, our NASA-supported Integrated Space Stem Cell Orbital Research (ISSCOR) team developed bone marrow niche nanobioreactors with lentiviral bicistronic fluorescent, ubiquitination-based cell-cycle indicator (FUCCI2BL) reporter for real-time HSPC tracking in artificial intelligence (AI)-driven CubeLabs.
View Article and Find Full Text PDFDengue fever is a mosquito-borne viral disease rapidly creating a significant global public health burden, particularly in urban areas of tropical and sub-tropical countries. Hydroclimatic variables, particularly local temperature, precipitation, relative humidity, and large-scale climate teleconnections, can influence the prevalence of dengue by impacting vector population development, viral replication, and human-mosquito interactions. Leveraging predictions of these variables at lead times of weeks to months can facilitate early warning system preparatory actions such as allocating funding, acquisition and preparation of medical supplies, or implementation of vector control strategies.
View Article and Find Full Text PDFBone Rep
September 2025
Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
Spaceflight (SF) and disuse result in decreases in bone and skeletal muscle volume that increase fracture risk. Hindlimb unloading (HLU) has been widely used to model the effects of microgravity. However, the effects of SF and HLU on bone and skeletal muscle have not been directly compared during long-duration SF.
View Article and Find Full Text PDFFASEB J
September 2025
UR SIMPA, Stress Immunity Pathogens Laboratory, Faculty of Medicine, University of Lorraine, Vandœuvre-lès-Nancy, France.
With future manned space projects involving missions of unprecedented duration, multisystem deconditioning induced by spaceflight could seriously affect the well-being and health of astronauts. Safe and easily determined in-flight biomarkers are therefore needed to monitor health status. In this study, we simulated space deconditioning with a 5-day dry immersion (DI) of 18 healthy women and 19 healthy men and evaluated the effects of this protocol on three biomarkers: the neutrophil-to-lymphocyte ratio (NLR), the granulocyte-to-lymphocyte ratio (GLR) and the platelet-to-lymphocyte ratio (PLR).
View Article and Find Full Text PDF