98%
921
2 minutes
20
Neuropeptides are diverse and evolutionarily ancient regulators of physiological/behavioural processes in animals. Here we have investigated the evolution and comparative physiology of luqin-type neuropeptide signalling, which has been characterised previously in protostomian invertebrates. Phylogenetic analysis indicates that luqin-type receptors and tachykinin-type receptors are paralogous and probably originated in a common ancestor of the Bilateria. In the deuterostomian lineage, luqin-type signalling has been lost in chordates but interestingly it has been retained in ambulacrarians. Therefore, here we characterised luqin-type signalling for the first time in an ambulacrarian - the starfish Asterias rubens (phylum Echinodermata). A luqin-like neuropeptide with a C-terminal RWamide motif (ArLQ; EEKTRFPKFMRW-NH) was identified as the ligand for two luqin-type receptors in A. rubens, ArLQR1 and ArLQR2. Furthermore, analysis of the expression of the ArLQ precursor using mRNA in situ hybridisation revealed expression in the nervous system, digestive system and locomotory organs (tube feet) and in vitro pharmacology revealed that ArLQ causes dose-dependent relaxation of tube feet. Accordingly, previous studies have revealed that luqin-type signalling regulates feeding and locomotor activity in protostomes. In conclusion, our phylogenetic analysis combined with characterisation of luqin-type signalling in a deuterostome has provided new insights into neuropeptide evolution and function in the animal kingdom.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940834 | PMC |
http://dx.doi.org/10.1038/s41598-018-25606-2 | DOI Listing |
Cell Tissue Res
March 2023
School of Biological & Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
Neuropeptides derived from larger precursor proteins are secreted as signalling molecules by neurons and regulate diverse physiological and behavioural processes in animals. Recently, we reported the discovery of ArCRZ (HNTFTMGGQNRWKAG-NH) and ArLQ (EEKTRFPKFMRW-NH)-novel neuropeptides in the starfish Asterias rubens that are orthologs of arthropod corazonins and molluscan luqins, respectively. However, our efforts to generate antibodies to ArCRZ and ArLQ have been unsuccessful, precluding immunohistochemical analysis of their expression.
View Article and Find Full Text PDFPeptides
September 2022
The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China. Electronic address:
The functional characteristics of neuropeptides in marine invertebrates have attracted significant attention recently although functional studies of luqin-type neuropeptides are still very limited, especially in deuterostomes. The sea cucumber, Apostichopus japonicus, is a representative species of deuterostomian Holothurian invertebrates. The species has high nutritional and medicinal value in China.
View Article and Find Full Text PDFFront Neurosci
February 2020
School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom.
Luqin is a neuropeptide that was discovered and named on account of its expression in left upper quadrant cells of the abdominal ganglion in the mollusc . Subsequently, luqin-type peptides were identified as cardio-excitatory neuropeptides in other molluscs and a cognate receptor was discovered in the pond snail Phylogenetic analyses have revealed that orthologs of molluscan luqin-type neuropeptides occur in other phyla; these include neuropeptides in ecdysozoans (arthropods, nematodes) that have a C-terminal RYamide motif (RYamides) and neuropeptides in ambulacrarians (echinoderms, hemichordates) that have a C-terminal RWamide motif (RWamides). Furthermore, precursors of luqin-type neuropeptides typically have a conserved C-terminal motif containing two cysteine residues, although the functional significance of this is unknown.
View Article and Find Full Text PDFSci Rep
May 2018
Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, E1 4NS, UK.
Neuropeptides are diverse and evolutionarily ancient regulators of physiological/behavioural processes in animals. Here we have investigated the evolution and comparative physiology of luqin-type neuropeptide signalling, which has been characterised previously in protostomian invertebrates. Phylogenetic analysis indicates that luqin-type receptors and tachykinin-type receptors are paralogous and probably originated in a common ancestor of the Bilateria.
View Article and Find Full Text PDFOpen Biol
February 2016
School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an 'intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.
View Article and Find Full Text PDF