Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The molecular structures of buried interfaces of maleic anhydride grafted and ungrafted polyethylene films with silica and nylon surfaces were studied in situ using sum-frequency generation (SFG) vibrational spectroscopy. Grafting maleic anhydride to polyethylene altered the molecular structures at buried interfaces, including changing the orientation of polymer methylene groups and resulting in the presence of C═O groups at silica interfaces. These molecular level changes are correlated with enhanced adhesion properties, with ordered C═O groups and in-plane orientation of the methylene groups associated with higher levels of adhesion. While improved adhesion was observed for grafted polyethylene at the nylon interface, no C═O groups were detected at the interface using SFG, for films thermally treated at 185 °C. In this case, either no C═O groups are present at the interface or they are disordered; the latter explanation is more likely, considering the observed improvement in adhesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b00930 | DOI Listing |