A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CXCL10 increases in human skeletal muscle following damage but is not necessary for muscle regeneration. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CXCL10 is a chemokine for activated and memory T cells with many important immunological functions. We recently found that CXCL10 is upregulated in human muscle following contraction-induced damage. No information is available on the role of CXCL10 in the context of muscle damage or repair. In this study, we confirm that CXCL10 is elevated in human muscle at 2 and 3 days following damage and perform cell culture and animal studies to examine the role of CXCL10 in muscle repair. CXCL10 did not impact proliferation rates of human primary myoblasts but it did promote myogenic differentiation in vitro, suggesting a possible direct impact on muscle regeneration. To test if CXCL10 was dispensable for effective muscle regeneration in vivo, we measured functional and histological markers of muscle repair out to 14 days postmuscle injury caused by a myotoxin in wild-type (WT) mice and CXCL10 knockout (KO) mice. Between genotypes, no significant differences were found in loss or restoration of in situ muscle force, cross-sectional area of newly formed myofibers, or the number of embryonic myosin heavy chain-positive myofibers. In addition, KO animals were not deficient in T-cell accumulation in the damaged muscle following injury. Gene expression of the other two ligands (CXCL9 and 11) that bind to the same receptor as CXCL10 were also elevated in the damaged muscle of KO mice. Thus, other ligands may have compensated for the lack of CXCL10 in the KO mice. We conclude that CXCL10 is not necessary for effective muscle regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917067PMC
http://dx.doi.org/10.14814/phy2.13689DOI Listing

Publication Analysis

Top Keywords

muscle regeneration
16
muscle
13
cxcl10
12
muscle damage
8
human muscle
8
role cxcl10
8
cxcl10 elevated
8
muscle repair
8
effective muscle
8
damaged muscle
8

Similar Publications