98%
921
2 minutes
20
Background: Untreated ischemic stroke can lead to severe morbidity and death, and as such, there are numerous endovascular blood-clot removal (thrombectomy) devices approved for human use. Human thrombi types are highly variable and are typically classified in qualitative terms - 'soft/red,' 'hard/white,' or 'aged/calcified.' Quantifying human thrombus properties can accelerate the development of thrombus analogs for the study of thrombectomy outcomes, which are often inconsistent among treated patients.
Methods: 'Soft'human thrombi were created from blood samples ex vivo (ie, human blood clotted in sample vials) and tested for mechanical properties using a hybrid rheometer material testing system. Synthetic thrombus materials were also mechanically tested and compared with the 'soft' human blood clots.
Results: Mechanical testing quantified the shear modulus and dynamic (elastic) modulus of volunteer human thrombus samples. This data was used to formulate a synthetic blood clot made from a composite polymer hydrogel of polyacrylamide and alginate (PAAM-Alg). The PAAM-Alg interpenetrating network of covalently and ionically cross-linked polymers had tunable elastic and shear moduli properties and shape memory characteristics.
Conclusions: Due to its adjustable properties, PAAM-Alg can be modified to mimic various thrombi classifications. Future studies will include obtaining and quantitatively classifying patient thrombectomy samples and altering the PAAM-Alg to mimic the results for use with in vitro thrombectomy studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188866 | PMC |
http://dx.doi.org/10.1136/neurintsurg-2017-013675 | DOI Listing |
Br J Haematol
September 2025
Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Refractory cytomegalovirus (CMV) infection is a severe complication following umbilical cord blood transplantation (UCBT). Antiviral agents, the standard first-line therapy, are limited by toxicity and resistance without robust T-cell immunity. We evaluated third-party donor (TPD)-derived CMV-specific T cells (CMVSTs) as a treatment option.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw, 02-093, Poland.
Alcohol use disorder (AUD) is characterized by pathological motivation to consume alcohol and cognitive inflexibility, leading to excessive alcohol seeking and use. In this study, we investigated the molecular correlates of impaired extinction of alcohol seeking during forced abstinence using a mouse model of AUD in the automated IntelliCage social system. This model distinguished AUD-prone and AUD-resistant animals based on the presence of ≥2 or <2 criteria of AUD, respectively.
View Article and Find Full Text PDFMol Psychiatry
September 2025
National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, 02130, USA.
Glial fibrillary acidic protein (GFAP) is an astrocytic marker that can be assessed in blood using single molecule array technology. Recent studies suggest that individuals with posttraumatic stress disorder (PTSD) have suppressed circulating levels of this CNS biomarker. This study examined the hypothesis that PTSD and plasma GFAP levels share common genetic and epigenetic pathways.
View Article and Find Full Text PDF