A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MoBiDiC Prioritization Algorithm, a Free, Accessible, and Efficient Pipeline for Single-Nucleotide Variant Annotation and Prioritization for Next-Generation Sequencing Routine Molecular Diagnosis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Interpretation of next-generation sequencing constitutes the main limitation of molecular diagnostics. In diagnosing myopathies and muscular dystrophies, another issue is efficiency in predicting the pathogenicity of variants identified in large genes, especially TTN; current in silico prediction tools show limitations in predicting and ranking the numerous variants of such genes. We propose a variant-prioritization tool, the MoBiDiCprioritization algorithm (MPA). MPA is based on curated interpretation of data on previously reported variants, biological assumptions, and splice and missense predictors, and is used to prioritize all types of single-nucleotide variants. MPA was validated by comparing its sensitivity and specificity to those of dbNSFP database prediction tools, using a data set composed of DYSF, DMD, LMNA, NEB, and TTN variants extracted from expert-reviewed and ExAC databases. MPA obtained the best annotation rates for missense and splice variants. As MPA aggregates the results from several predictors, individual predictor errors are counterweighted, improving the sensitivity and specificity of missense and splice variant predictions. We propose a sequential use of MPA, beginning with the selection of variants with higher scores and followed by, in the absence of candidate pathologic variants, consideration of variants with lower scores. We provide scripts and documentation for free academic use and a validated annotation pipeline scaled for panel and exome sequencing to prioritize single-nucleotide variants from a VCF file.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmoldx.2018.03.009DOI Listing

Publication Analysis

Top Keywords

variants
10
next-generation sequencing
8
prediction tools
8
single-nucleotide variants
8
variants mpa
8
sensitivity specificity
8
missense splice
8
mpa
6
mobidic prioritization
4
prioritization algorithm
4

Similar Publications