Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A generalized toxicity classification model for 7 different oxide nanomaterials is presented in this study. A data set extracted from multiple literature sources and screened by physicochemical property based quality scores were used for model development. Moreover, a few more preprocessing techniques, such as synthetic minority over-sampling technique, were applied to address the imbalanced class problem in the data set. Then, classification models using four different algorithms, such as generalized linear model, support vector machine, random forest, and neural network, were developed and their performances were compared to find the best performing preprocessing methods as well as algorithms. The neural network model built using the balanced data set was identified as the model with best predictive performance, while applicability domain was defined using k-nearest neighbours algorithm. The analysis of relative attribute importance for the built neural network model identified dose, formation enthalpy, exposure time, and hydrodynamic size as the four most important attributes. As the presented model can predict the toxicity of the nanomaterials in consideration of various experimental conditions, it has the advantage of having a broader and more general applicability domain than the existing quantitative structure-activity relationship model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904177PMC
http://dx.doi.org/10.1038/s41598-018-24483-zDOI Listing

Publication Analysis

Top Keywords

data set
12
neural network
12
model
9
generalized toxicity
8
model oxide
8
oxide nanomaterials
8
network model
8
applicability domain
8
toxicity prediction
4
prediction model
4

Similar Publications

Gepotidacin, a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial, was noninferior to nitrofurantoin in two pivotal trials (EAGLE-2 and EAGLE-3) in females with uncomplicated urinary tract infections (uUTIs). Using pooled data, gepotidacin activity and clinical efficacy were evaluated for subsets of molecularly characterized isolates in the microbiological Intent-to-Treat population. The subsets of isolates were characterized based on phenotypic/MIC criteria; all microbiological failure isolates were also characterized.

View Article and Find Full Text PDF

How many (distinguishable) classes can we identify in single-particle analysis?

Acta Crystallogr D Struct Biol

October 2025

Centro Nacional de Biotecnologia-CSIC, Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain.

Heterogeneity in cryoEM is essential for capturing the structural variability of macromolecules, reflecting their functional states and biological significance. However, estimating heterogeneity remains challenging due to particle misclassification and algorithmic biases, which can lead to reconstructions that blend distinct conformations or fail to resolve subtle differences. Furthermore, the low signal-to-noise ratio inherent in cryo-EM data makes it nearly impossible to detect minute structural changes, as noise often obscures subtle variations in macromolecular projections.

View Article and Find Full Text PDF

We describe the rationale, methodology, and design of the Boston University Alzheimer's Disease Research Center (BU ADRC) Clinical Core (CC). The CC characterizes a longitudinal cohort of participants with/without brain trauma to characterize the clinical presentation, biomarker profiles, and risk factors of post-traumatic Alzheimer's disease (AD) and AD-related dementias (ADRD), including chronic traumatic encephalopathy (CTE). Participants complete assessments of traumatic brain injury (TBI) and repetitive head impacts (RHIs); annual Uniform Data Set (UDS) and supplementary evaluations; digital phenotyping; annual blood draw; magnetic resonance imaging (MRI) and lumbar puncture every 3 years; electroencephalogram (EEG); and amyloid and/or tau positron emission tomography (PET) on a subset.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a significant morbidity in premature infants. This study aimed to assess the accuracy of the model's predictions in comparison to clinical outcomes. Medical records of premature infants born ≤ 28 weeks and < 1250 g between January 1, 2020, and December 31, 2021, in the neonatal intensive care unit were obtained.

View Article and Find Full Text PDF

Machine Learning Parameters of Optimally Tuned Range-Separated Hybrid Functionals for Transition Metal Complexes.

J Phys Chem Lett

September 2025

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

In this work, we present a machine learning (ML) approach for predicting the optimal range separation parameters in transition metal complexes (TMCs), aiming to reduce the computational cost associated with optimally tuned range-separated hybrid (OT-RSH) functionals while preserving their accuracy. A data set containing 4380 TMCs was constructed by screening the tmQM database, with each TMC represented by a 62 087-dimensional multiple-fingerprint feature (MFF) vector and labeled with its optimally tuned range separation parameter. Multiple regression models were applied to train the prediction model, and the support vector machine (SVM) model yielded the best performance.

View Article and Find Full Text PDF