Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A constellation of metabolic disorders, including obesity, dysregulated lipids, and elevations in blood glucose levels, has been associated with cardiovascular disease and diabetes. Analysis of data from recently published genome-wide association studies (GWAS) demonstrated that reduced-function polymorphisms in the organic cation transporter, OCT1 (SLC22A1), are significantly associated with higher total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels and an increased risk for type 2 diabetes mellitus, yet the mechanism linking OCT1 to these metabolic traits remains puzzling. Here, we show that OCT1, widely characterized as a drug transporter, plays a key role in modulating hepatic glucose and lipid metabolism, potentially by mediating thiamine (vitamin B1) uptake and hence its levels in the liver. Deletion of Oct1 in mice resulted in reduced activity of thiamine-dependent enzymes, including pyruvate dehydrogenase (PDH), which disrupted the hepatic glucose-fatty acid cycle and shifted the source of energy production from glucose to fatty acids, leading to a reduction in glucose utilization, increased gluconeogenesis, and altered lipid metabolism. In turn, these effects resulted in increased total body adiposity and systemic levels of glucose and lipids. Importantly, wild-type mice on thiamine deficient diets (TDs) exhibited impaired glucose metabolism that phenocopied Oct1 deficient mice. Collectively, our study reveals a critical role of hepatic thiamine deficiency through OCT1 deficiency in promoting the metabolic inflexibility that leads to the pathogenesis of cardiometabolic disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919692 | PMC |
http://dx.doi.org/10.1371/journal.pbio.2002907 | DOI Listing |