A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Introducing the risk aggregation problem to aquifers exposed to impacts of anthropogenic and geogenic origins on a modular basis using 'risk cells'. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proof-of-concept is presented in this paper to a methodology formulated for indexing risks to groundwater aquifers exposed to impacts of diffuse contaminations from anthropogenic and geogenic origins. The methodology is for mapping/indexing, which refers to relative values but not their absolute values. The innovations include: (i) making use of the Origins-Source-Pathways-Receptors-Consequences (OSPRC) framework; and (ii) dividing a study area into modular Risk (OSPRC) Cells to capture their idiosyncrasies with different origins. Field measurements are often sparse and comprise pollutants and water table, which are often costly; whereas supplementary data are general-purpose data, which are widely available. Risk mapping for each OSPRC cell is processed by dividing a study area into pixels and for each pixel, the risk from both anthropogenic and geogenic origins are indexed by using algorithms related to: (i) Vulnerability Indices (VI), which identify the potential for risk exposures at each pixel; and (ii) velocity gradient, which expresses the potency to risk exposures across the risk cell. The paper uses DRASTIC for anthropogenic VI but introduces a new framework for geogenic VI. The methodology has a generic architecture and is flexible to modularise risks involving any idiosyncrasies in a generic way in any site exposed to environmental pollution risks. Its application to a real study area provides evidence for the proof-of-concept for the methodology by a set of results that are fit-for-purpose and provides an insight into the study area together with the identification of its hotspots.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2018.04.011DOI Listing

Publication Analysis

Top Keywords

study area
16
anthropogenic geogenic
12
geogenic origins
12
aquifers exposed
8
exposed impacts
8
dividing study
8
risk exposures
8
risk
6
introducing risk
4
risk aggregation
4

Similar Publications