Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Proof-of-concept is presented in this paper to a methodology formulated for indexing risks to groundwater aquifers exposed to impacts of diffuse contaminations from anthropogenic and geogenic origins. The methodology is for mapping/indexing, which refers to relative values but not their absolute values. The innovations include: (i) making use of the Origins-Source-Pathways-Receptors-Consequences (OSPRC) framework; and (ii) dividing a study area into modular Risk (OSPRC) Cells to capture their idiosyncrasies with different origins. Field measurements are often sparse and comprise pollutants and water table, which are often costly; whereas supplementary data are general-purpose data, which are widely available. Risk mapping for each OSPRC cell is processed by dividing a study area into pixels and for each pixel, the risk from both anthropogenic and geogenic origins are indexed by using algorithms related to: (i) Vulnerability Indices (VI), which identify the potential for risk exposures at each pixel; and (ii) velocity gradient, which expresses the potency to risk exposures across the risk cell. The paper uses DRASTIC for anthropogenic VI but introduces a new framework for geogenic VI. The methodology has a generic architecture and is flexible to modularise risks involving any idiosyncrasies in a generic way in any site exposed to environmental pollution risks. Its application to a real study area provides evidence for the proof-of-concept for the methodology by a set of results that are fit-for-purpose and provides an insight into the study area together with the identification of its hotspots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.04.011 | DOI Listing |