98%
921
2 minutes
20
Metastatic seeding is driven by cell-intrinsic and environmental cues, yet the contribution of biomechanics is poorly known. We aim to elucidate the impact of blood flow on the arrest and the extravasation of circulating tumor cells (CTCs) in vivo. Using the zebrafish embryo, we show that arrest of CTCs occurs in vessels with favorable flow profiles where flow forces control the adhesion efficacy of CTCs to the endothelium. We biophysically identified the threshold values of flow and adhesion forces allowing successful arrest of CTCs. In addition, flow forces fine-tune tumor cell extravasation by impairing the remodeling properties of the endothelium. Importantly, we also observe endothelial remodeling at arrest sites of CTCs in mouse brain capillaries. Finally, we observed that human supratentorial brain metastases preferably develop in areas with low perfusion. These results demonstrate that hemodynamic profiles at metastatic sites regulate key steps of extravasation preceding metastatic outgrowth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devcel.2018.02.015 | DOI Listing |
Acta Physiol (Oxf)
October 2025
Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
Background: The cerebral circulation is continuously challenged by intravascular micrometer-sized particles that become trapped microvascular-emboli. These particles may include micro-thrombi, stiffened erythrocytes, and leukocytes, while also fat particles, air, and microplastics may cause microvascular embolism.
Review Scope: In this narrative review, we discuss these embolization processes and their acute and chronic consequences.
J Control Release
September 2025
Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. Electronic address:
Most chemotherapeutics distribute non-specifically throughout the body, resulting in off-target toxicities. Nanoparticle (NP) formulations provide a strategy to improve drug delivery by extending circulation time, protecting therapeutic agents from degradation, and enabling controlled release. However, delivering NPs effectively to solid tumors remains challenging due to the barriers within the tumor microenvironment.
View Article and Find Full Text PDFNat Commun
September 2025
School of Materials Science and Engineering, UNSW, Sydney, NSW, Australia.
Metastasis is responsible for most cancer-related deaths. However, only a fraction of circulating cancer cells succeed in forming secondary tumours, indicating that adaptive mechanisms during circulation play a part in dissemination. Here, we report that constriction during microcapillary transit triggers reprogramming of melanoma cells to a tumorigenic cancer stem cell-like state.
View Article and Find Full Text PDFCurr Drug Res Rev
July 2025
Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India.
Breast Cancer (BC) continues to exist as the leading cause of cancer-related deaths among women globally. The burden of BC continues to rise despite extensive research efforts dedicated to its diagnosis, prevention, and management. In recent years, nanotherapeutics have shown promising advancements over conventional therapies, including better drug encapsulation, reduced toxicity, multiplied stability, and extended half-life through addressing the limitations of traditional diagnostic and treatment methods.
View Article and Find Full Text PDFCells
August 2025
Unit of Vascular Surgery, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
Metastatic dissemination defines a complex phenomenon driven by genetic forces and, importantly, determined by interaction between cancer cells and the surrounding stroma. Although the biologic and immune reactions which characterize the process have been widely and extensively evaluated, fewer data are available regarding the mechanical and physical forces to which circulating neoplastic clones are exposed. It should be hypothesized that this interaction can be modified in case of concomitant pathologic conditions, such as chronic vasculopathy, which frequently occurs in lung cancer patients.
View Article and Find Full Text PDF