Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a novel reconstruction algorithm based on a general cone-beam CT forward model, which is capable of incorporating the blur and noise correlations that are exhibited in flat-panel CBCT measurement data. Specifically, the proposed model may include scintillator blur, focal-spot blur, and noise correlations due to light spread in the scintillator. The proposed algorithm (GPL-BC) uses a Gaussian Penalized-Likelihood objective function, which incorporates models of blur and correlated noise. In a simulation study, GPL-BC was able to achieve lower bias as compared with deblurring followed by FDK as well as a model-based reconstruction method without integration of measurement blur. In the same study, GPL-BC was able to achieve better line-pair reconstructions (in terms of segmented-image accuracy) as compared with deblurring followed by FDK, a model-based method without blur, and a model-based method with blur but not noise correlations. A prototype extremities quantitative cone-beam CT test-bench was used to image a physical sample of human trabecular bone. These data were used to compare reconstructions using the proposed method and model-based methods without blur and/or correlation to a registered CT image of the same bone sample. The GPL-BC reconstructions resulted in more accurate trabecular bone segmentation. Multiple trabecular bone metrics, including trabecular thickness (Tb.Th.) were computed for each reconstruction approach as well as the CT volume. The GPL-BC reconstruction provided the most accurate Tb.Th. measurement, 0.255 mm, as compared with the CT derived value of 0.193 mm, followed by the GPL-B reconstruction, the GPL-I reconstruction, and then the FDK reconstruction (0.271 mm, 0.309 mm, and 0.335 mm, respectively).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889122PMC
http://dx.doi.org/10.1109/TMI.2017.2779406DOI Listing

Publication Analysis

Top Keywords

blur noise
12
noise correlations
12
trabecular bone
12
blur
8
study gpl-bc
8
gpl-bc achieve
8
compared deblurring
8
deblurring fdk
8
model-based method
8
method blur
8

Similar Publications

Cell confluence and number are critical indicators for assessing cellular growth status, contributing to disease diagnosis and the development of targeted therapies. Accurate and efficient cell segmentation is essential for quantifying these indicators. However, current segmentation methodologies still encounter significant challenges in addressing multi-scale heterogeneity, poorly delineated boundaries under limited annotation, and the inherent trade-off between computational efficiency and segmentation accuracy.

View Article and Find Full Text PDF

: This study investigates whether scan time in the high-resolution magnetic resonance imaging (MRI) of human embryos can be reduced without compromising spatial resolution by applying zero-shot self-supervised learning (ZS-SSL), a deep-learning-based reconstruction method. : Simulations using a numerical phantom were conducted to evaluate spatial resolution across various acceleration factors (AF = 2, 4, 6, and 8) and signal-to-noise ratio (SNR) levels. Resolution was quantified using a blur-based estimation method based on the Sparrow criterion.

View Article and Find Full Text PDF

Wheat is significantly impacted by fungal diseases, which result in severe economic losses. These diseases result from pathogenic spores invading wheat. Rapid and accurate detection of these spores is essential for post-harvest contamination risk assessment and early warning.

View Article and Find Full Text PDF

Apple-detection performance in orchards degrades markedly under low-light conditions, where intensified noise and non-uniform exposure blur edge cues critical for precise localisation. We propose Knowledge Distillation with Geometry-Consistent Feature Alignment (KDFA), a compact end-to-end framework that couples image enhancement and detection through the following two complementary components: (i) Cross-Domain Mutual-Information-Bound Knowledge Distillation, which maximises an InfoNCE lower bound between daylight-teacher and low-light-student region embeddings; (ii) Geometry-Consistent Feature Alignment, which imposes Laplacian smoothness and bipartite graph correspondences across multiscale feature lattices. Trained on 1200 pixel-aligned bright/low-light image pairs, KDFA achieves 51.

View Article and Find Full Text PDF

A robust approach for analyzing and mapping hierarchical brain connectome towards laminar-specific neural networks.

Imaging Neurosci (Camb)

April 2025

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States.

Probing neuronal activity and functional connectivity at cortical layer and sub-cortical nucleus level provides opportunities for mapping local and remote neural circuits and resting-state networks (RSN) critical for understanding cognition and behaviors. However, conventional resting-state fMRI (rs-fMRI) has been applied predominantly at relatively low spatial resolution and macroscopic level, unable to obtain laminar-specific information and neural circuits across the cortex at mesoscopic level. In addition, it is lack of sophisticated processing pipeline to deal with small laminar structures in rodent brains.

View Article and Find Full Text PDF