98%
921
2 minutes
20
We present a novel reconstruction algorithm based on a general cone-beam CT forward model, which is capable of incorporating the blur and noise correlations that are exhibited in flat-panel CBCT measurement data. Specifically, the proposed model may include scintillator blur, focal-spot blur, and noise correlations due to light spread in the scintillator. The proposed algorithm (GPL-BC) uses a Gaussian Penalized-Likelihood objective function, which incorporates models of blur and correlated noise. In a simulation study, GPL-BC was able to achieve lower bias as compared with deblurring followed by FDK as well as a model-based reconstruction method without integration of measurement blur. In the same study, GPL-BC was able to achieve better line-pair reconstructions (in terms of segmented-image accuracy) as compared with deblurring followed by FDK, a model-based method without blur, and a model-based method with blur but not noise correlations. A prototype extremities quantitative cone-beam CT test-bench was used to image a physical sample of human trabecular bone. These data were used to compare reconstructions using the proposed method and model-based methods without blur and/or correlation to a registered CT image of the same bone sample. The GPL-BC reconstructions resulted in more accurate trabecular bone segmentation. Multiple trabecular bone metrics, including trabecular thickness (Tb.Th.) were computed for each reconstruction approach as well as the CT volume. The GPL-BC reconstruction provided the most accurate Tb.Th. measurement, 0.255 mm, as compared with the CT derived value of 0.193 mm, followed by the GPL-B reconstruction, the GPL-I reconstruction, and then the FDK reconstruction (0.271 mm, 0.309 mm, and 0.335 mm, respectively).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889122 | PMC |
http://dx.doi.org/10.1109/TMI.2017.2779406 | DOI Listing |
Bioengineering (Basel)
August 2025
School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China.
Cell confluence and number are critical indicators for assessing cellular growth status, contributing to disease diagnosis and the development of targeted therapies. Accurate and efficient cell segmentation is essential for quantifying these indicators. However, current segmentation methodologies still encounter significant challenges in addressing multi-scale heterogeneity, poorly delineated boundaries under limited annotation, and the inherent trade-off between computational efficiency and segmentation accuracy.
View Article and Find Full Text PDFTomography
August 2025
Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
: This study investigates whether scan time in the high-resolution magnetic resonance imaging (MRI) of human embryos can be reduced without compromising spatial resolution by applying zero-shot self-supervised learning (ZS-SSL), a deep-learning-based reconstruction method. : Simulations using a numerical phantom were conducted to evaluate spatial resolution across various acceleration factors (AF = 2, 4, 6, and 8) and signal-to-noise ratio (SNR) levels. Resolution was quantified using a blur-based estimation method based on the Sparrow criterion.
View Article and Find Full Text PDFPlant Methods
August 2025
Institute of Food Quality and Safety Testing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
Wheat is significantly impacted by fungal diseases, which result in severe economic losses. These diseases result from pathogenic spores invading wheat. Rapid and accurate detection of these spores is essential for post-harvest contamination risk assessment and early warning.
View Article and Find Full Text PDFSensors (Basel)
August 2025
Department of UAV Engineering, Shijiazhuang Campus, Army Engineering University, Shijiazhuang 050003, China.
Apple-detection performance in orchards degrades markedly under low-light conditions, where intensified noise and non-uniform exposure blur edge cues critical for precise localisation. We propose Knowledge Distillation with Geometry-Consistent Feature Alignment (KDFA), a compact end-to-end framework that couples image enhancement and detection through the following two complementary components: (i) Cross-Domain Mutual-Information-Bound Knowledge Distillation, which maximises an InfoNCE lower bound between daylight-teacher and low-light-student region embeddings; (ii) Geometry-Consistent Feature Alignment, which imposes Laplacian smoothness and bipartite graph correspondences across multiscale feature lattices. Trained on 1200 pixel-aligned bright/low-light image pairs, KDFA achieves 51.
View Article and Find Full Text PDFImaging Neurosci (Camb)
April 2025
Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States.
Probing neuronal activity and functional connectivity at cortical layer and sub-cortical nucleus level provides opportunities for mapping local and remote neural circuits and resting-state networks (RSN) critical for understanding cognition and behaviors. However, conventional resting-state fMRI (rs-fMRI) has been applied predominantly at relatively low spatial resolution and macroscopic level, unable to obtain laminar-specific information and neural circuits across the cortex at mesoscopic level. In addition, it is lack of sophisticated processing pipeline to deal with small laminar structures in rodent brains.
View Article and Find Full Text PDF