Variations in Ca Influx Can Alter Chelator-Based Estimates of Ca Channel-Synaptic Vesicle Coupling Distance.

J Neurosci

Laboratory of Dynamic Neuronal Imaging, Department of Neuroscience, Institut Pasteur, 75724 Paris Cedex 15, France, and

Published: April 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The timing and probability of synaptic vesicle fusion from presynaptic terminals is governed by the distance between voltage-gated Ca channels (VGCCs) and Ca sensors for exocytosis. This VGCC-sensor coupling distance can be determined from the fractional block of vesicular release by exogenous Ca chelators, which depends on biophysical factors that have not been thoroughly explored. Using numerical simulations of Ca reaction and diffusion, as well as vesicular release, we examined the contributions of conductance, density, and open duration of VGCCs, and the influence of endogenous Ca buffers on the inhibition of exocytosis by EGTA. We found that estimates of coupling distance are critically influenced by the duration and amplitude of Ca influx at active zones, but relatively insensitive to variations of mobile endogenous buffer. High concentrations of EGTA strongly inhibit vesicular release in close proximity (20-30 nm) to VGCCs if the flux duration is brief, but have little influence for longer flux durations that saturate the Ca sensor. Therefore, the diversity in presynaptic action potential duration is sufficient to alter EGTA inhibition, resulting in errors potentially as large as 300% if Ca entry durations are not considered when estimating VGCC-sensor coupling distances. The coupling distance between voltage-gated Ca channels and Ca sensors for exocytosis critically determines the timing and probability of neurotransmitter release. Perfusion of presynaptic terminals with the exogenous Ca chelator EGTA has been widely used for both qualitative and quantitative estimates of this distance. However, other presynaptic terminal parameters such as the amplitude and duration of Ca entry can also influence EGTA inhibition of exocytosis, thus confounding conclusions based on EGTA alone. Here, we performed reaction-diffusion simulations of Ca-driven synaptic vesicle fusion, which delineate the critical parameters influencing an accurate prediction of coupling distance. Our study provides guidelines for characterizing and understanding how variability in coupling distance across chemical synapses could be estimated accurately.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705926PMC
http://dx.doi.org/10.1523/JNEUROSCI.2061-17.2018DOI Listing

Publication Analysis

Top Keywords

coupling distance
24
vesicular release
12
distance
8
timing probability
8
synaptic vesicle
8
vesicle fusion
8
presynaptic terminals
8
distance voltage-gated
8
voltage-gated channels
8
sensors exocytosis
8

Similar Publications

Positive Neutrino Masses with DESI DR2 via Matter Conversion to Dark Energy.

Phys Rev Lett

August 2025

National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing, 100101, Peoples Republic of China.

The Dark Energy Spectroscopic Instrument (DESI) is a massively parallel spectroscopic survey on the Mayall telescope at Kitt Peak, which has released measurements of baryon acoustic oscillations determined from over 14 million extragalactic targets. We combine DESI Data Release 2 with CMB datasets to search for evidence of matter conversion to dark energy (DE), focusing on a scenario mediated by stellar collapse to cosmologically coupled black holes (CCBHs). In this physical model, which has the same number of free parameters as ΛCDM, DE production is determined by the cosmic star formation rate density (SFRD), allowing for distinct early- and late-time cosmologies.

View Article and Find Full Text PDF

We propose a two parameters extension of the flat ΛCDM model to capture the impact of matter inhomogeneities on our cosmological inference. Non virialized but nonlinearly evolving overdense and underdense regions, whose abundance is quantified using the Press-Schechter formalism, are collectively described by two effective perfect fluids ρ_{c}, ρ_{v} with nonvanishing equation of state parameters w_{c,v}≠0. These fluids are coupled to the pressureless dust, akin to an interacting DM-DE scenario.

View Article and Find Full Text PDF

Science of music-based citizen science: How seeing influences hearing.

PLoS One

September 2025

Department of Engineering and School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.

Citizen science engages volunteers to contribute data to scientific projects, often through visual annotation tasks. Hearing based activities are rare and less well understood. Having high quality annotations of performed music structures is essential for reliable algorithmic analysis of recorded music with applications ranging from music information retrieval to music therapy.

View Article and Find Full Text PDF

Dynamic Coupling and Disorder in Aggregation of Light-Harvesting Complex II in Plant Thylakoid Membranes.

J Phys Chem B

September 2025

Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India.

The dynamics of the aggregated light-harvesting complex (LHCII) associated with its antenna pigments can be crucial for a transition between light-harvesting and dissipative states, which is pivotal for nonphotochemical quenching (NPQ). To this end, aggregation of pigment-binding LHCII monomers and PsbS-associated trimers in neutral and low lumenal pH respectively, has been investigated when embedded in the plant thylakoid membranes, using coarse-grained molecular dynamics simulations. Both pigment-binding LHCII monomers and PsbS-associated trimers dynamically form and break dimers and higher-order aggregates in thylakoids within the simulation time.

View Article and Find Full Text PDF

Structure Engineering Enabled O-O Radical Coupling in Spinel Oxides for Enhanced Oxygen Evolution Reaction.

J Am Chem Soc

September 2025

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

Developing cost-effective spinel oxide catalysts with both high oxygen evolution reaction (OER) activity and stability is crucial for advancing sustainable clean energy conversion. However, practical applications are often hindered by the activity limitations inherent in the adsorbate evolution mechanism (AEM) and the stability limitations associated with the lattice oxygen mechanism (LOM). Herein, we demonstrate structural changes induced by phase transformation in CoMn spinel oxides, which yield more active octahedral sites with shortened intersite distance.

View Article and Find Full Text PDF