Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: The authors investigated the utility of noninvasive hemodynamic assessment in the identification of high-risk plaques that caused subsequent acute coronary syndrome (ACS).

Background: ACS is a critical event that impacts the prognosis of patients with coronary artery disease. However, the role of hemodynamic factors in the development of ACS is not well-known.

Methods: Seventy-two patients with clearly documented ACS and available coronary computed tomographic angiography (CTA) acquired between 1 month and 2 years before the development of ACS were included. In 66 culprit and 150 nonculprit lesions as a case-control design, the presence of adverse plaque characteristics (APC) was assessed and hemodynamic parameters (fractional flow reserve derived by coronary computed tomographic angiography [FFR], change in FFR across the lesion [△FFR], wall shear stress [WSS], and axial plaque stress) were analyzed using computational fluid dynamics. The best cut-off values for FFR, △FFR, WSS, and axial plaque stress were used to define the presence of adverse hemodynamic characteristics (AHC). The incremental discriminant and reclassification abilities for ACS prediction were compared among 3 models (model 1: percent diameter stenosis [%DS] and lesion length, model 2: model 1 + APC, and model 3: model 2 + AHC).

Results: The culprit lesions showed higher %DS (55.5 ± 15.4% vs. 43.1 ± 15.0%; p < 0.001) and higher prevalence of APC (80.3% vs. 42.0%; p < 0.001) than nonculprit lesions. Regarding hemodynamic parameters, culprit lesions showed lower FFR and higher △FFR, WSS, and axial plaque stress than nonculprit lesions (all p values <0.01). Among the 3 models, model 3, which included hemodynamic parameters, showed the highest c-index, and better discrimination (concordance statistic [c-index] 0.789 vs. 0.747; p = 0.014) and reclassification abilities (category-free net reclassification index 0.287; p = 0.047; relative integrated discrimination improvement 0.368; p < 0.001) than model 2. Lesions with both APC and AHC showed significantly higher risk of the culprit for subsequent ACS than those with no APC/AHC (hazard ratio: 11.75; 95% confidence interval: 2.85 to 48.51; p = 0.001) and with either APC or AHC (hazard ratio: 3.22; 95% confidence interval: 1.86 to 5.55; p < 0.001).

Conclusions: Noninvasive hemodynamic assessment enhanced the identification of high-risk plaques that subsequently caused ACS. The integration of noninvasive hemodynamic assessments may improve the identification of culprit lesions for future ACS. (Exploring the Mechanism of Plaque Rupture in Acute Coronary Syndrome Using Coronary CT Angiography and Computational Fluid Dynamic [EMERALD]; NCT02374775).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcmg.2018.01.023DOI Listing

Publication Analysis

Top Keywords

coronary computed
12
computed tomographic
12
tomographic angiography
12
nonculprit lesions
12
axial plaque
12
plaque stress
12
identification high-risk
8
high-risk plaques
8
acute coronary
8
coronary syndrome
8

Similar Publications

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF

As a key mitochondrial Ca transporter, NCLX regulates intracellular Ca signalling and vital mitochondrial processes. The importance of NCLX in cardiac and nervous-system physiology is reflected by acute heart failure and neurodegenerative disorders caused by its malfunction. Despite substantial advances in the field, the transport mechanisms of NCLX remain unclear.

View Article and Find Full Text PDF

Atherosclerosis, a major cause of cardiovascular diseases, is characterized by the buildup of lipids and chronic inflammation in the arteries, leading to plaque formation and potential rupture. Despite recent advances in single-cell transcriptomics (scRNA-seq), the underlying immune mechanisms and transformations in structural cells driving plaque progression remain incompletely defined. Existing datasets often lack comprehensive coverage and consistent annotations, limiting the utility of downstream analyses.

View Article and Find Full Text PDF

A left ventricular sub-mitral thrombus without an aneurysm is a previously unreported rare occurrence. We aim to bring attention to this finding in a case of colorectal adenocarcinoma.An early 60s-year-old female presented with bleeding per rectum, weight loss and fatigue and was found to have colorectal carcinoma with metastasis based on examination, imaging and biopsy findings.

View Article and Find Full Text PDF