98%
921
2 minutes
20
Background: High throughput sequencing allows identification of small non-coding RNAs. Transfer RNA Fragments are a class of small non-coding RNAs, and have been identified as being involved in inhibition of gene expression. Given their role, it is possible they may be involved in mediating the infection-induced defense response in the host. Therefore, the objective of this study was to identify 5' transfer RNA fragments (tRF5s) associated with a serum antibody response to M. bovis in beef cattle.
Results: The tRF5s encoding alanine, glutamic acid, glycine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with antibody response against M. bovis. tRF5s encoding alanine, glutamine, glutamic acid, glycine, histidine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with season, which could be attributed to calf growth. There were interactions (P < 0.05) between antibody response to M. bovis and season for tRF5 encoding selenocysteine (anticodon UGA), proline (anticodon CGG), and glutamine (anticodon TTG). Selenocysteine is a rarely used amino acid that is incorporated into proteins by the opal stop codon (UGA), and its function is not well understood.
Conclusions: Differential expression of tRF5s was identified between ELISA-positive and negative animals. Production of tRF5s may be associated with a host defense mechanism triggered by bacterial infection, or it may provide some advantage to a pathogen during infection of a host. Further studies are needed to establish if tRF5s could be used as a diagnostic marker of chronic exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851088 | PMC |
http://dx.doi.org/10.1186/s12917-018-1418-z | DOI Listing |
Mitochondrial DNA B Resour
September 2025
Department of Forestry and Nature Resources, National Chiayi University, Chiayi, Taiwan.
Hayata 1916 is a unique bamboo species endemic to Taiwan, typically found at elevations ranging from 500 to 1,500 meters. This study provides a detailed analysis of the complete chloroplast genome of for the first time. The genome spans 139,664 base pairs (bp) and consists of a large single-copy (LSC) region of 83,192 bp, a small single-copy (SSC) region of 12,869 bp, and two inverted repeat (IR) regions, each 21,798 bp in length.
View Article and Find Full Text PDFMol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDFACS Synth Biol
September 2025
Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States.
Microbes can be programmed to record participation in gene transfer by coding biological-recording devices into mobile DNA. Upon DNA uptake, these devices transcribe a catalytic RNA (cat-RNA) that binds to conserved sequences within ribosomal RNAs (rRNAs) and perform a trans-splicing reaction that adds a barcode to the rRNAs. Existing cat-RNA designs were generated to be broad-host range, providing no control over the organisms that were barcoded.
View Article and Find Full Text PDFGut Microbes
December 2025
Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD, USA.
Parity, the number of pregnancies carried beyond 20 weeks, influences the maternal gut microbiome. However, whether parity modulates the infant microbiome longitudinally remains underexplored. To address this, 746 infants in a longitudinal cohort study were assessed.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
OmnibusXLab, OmnibusX Company Limited, Ho Chi Minh City, Vietnam.
OmnibusX is an integrated, privacy-centric platform that enables code-free multi-omics data analysis by bridging computational methodologies with user-friendly interfaces. Designed to overcome challenges posed by fragmented analytical tools and high computational barriers, OmnibusX consolidates workflows for diverse technologies - including bulk RNA-seq, single-cell RNA-seq, single-cell ATAC-seq, and spatial transcriptomics - into a single, cohesive application. The application integrates established open-source tools such as Scanpy, DESeq2, SciPy, and scikit-learn into transparent, reproducible pipelines, offering users control over analytical parameters.
View Article and Find Full Text PDF