98%
921
2 minutes
20
Recent cell biology studies reveal that a cell can die through multiple pathways via distinct signaling mechanisms. Among these, apoptosis and necrosis are two distinct cell death pathways, and their detection and discrimination is vital in the drug discovery process and in understanding diverse biological processes. Although sensitive assays for apoptosis and necrosis are available, it is extremely difficult to adapt any of these methods to discriminate apoptosis-inducing stimuli from necrosis-inducing stimuli because of the acquisition of secondary necrosis by apoptotic cells when they are not phagocytosed. Essentially, any assay for discriminating apoptosis and necrosis needs to be carried out in real-time kinetic mode. Caspase 3 or 7 activation is observed in the majority of apoptotic cell death. Similarly, the absence of caspase 3/7 activation and cell membrane leakage are the two prominent indicators for necrotic cell death or necroptosis. The programmed form of necrosis, called pyroptosis, is also accompanied by membrane leakage and most often associated with activation of specific caspases such as caspase 1, 4, or 11, but not through caspase 3/7 activation. Here, a robust and sensitive real-time method is described to distinguish and discriminate apoptosis from necrosis. The assay utilizes stable integration of a genetically encoded fluorescence resonance energy transfer (FRET) probe for caspase 3/7 activation and the mitochondrion-targeted DsRed to identify necrotic cells. Caspase activation is determined by cleavage of the FRET probe; loss of soluble FRET probe with retention of mitochondrial red fluorescence indicates necrosis. This unit describes an important protocol for the generation of sensor cells expressing both probes, followed by detailed analysis of apoptosis and necrosis by microscopy imaging, confocal imaging, high-throughput imaging, and flow cytometry. © 2018 by John Wiley & Sons, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cptx.39 | DOI Listing |
Infect Immun
September 2025
School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA.
Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.
View Article and Find Full Text PDFApoptosis
September 2025
Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuang, China.
Cardiovascular diseases (CVDs) are a leading cause of death globally, responsible for 32% of all fatalities. They significantly reduce quality of life and life expectancy, while imposing a substantial economic burden on healthcare systems in different countries. High mobility group box 1 (HMGB1), a location-dependent multifunctional protein, plays a significant role in various cell death pathways associated with CVDs.
View Article and Find Full Text PDFApoptosis
September 2025
The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou, 646000, China.
Diabetic cardiomyopathy (DCM) is a severe cardiovascular complication of diabetes mellitus, characterized by pathological changes such as cardiomyocyte hypertrophy, necrosis, and myocardial fibrosis, which can ultimately lead to heart failure. However, its underlying mechanisms remain incompletely understood, limiting the development of effective therapeutic approaches. In recent years, the critical roles of oxidative stress and ferroptosis in the pathogenesis of DCM have attracted increasing attention.
View Article and Find Full Text PDFOdontology
September 2025
Department of Biomaterials, Hamidiye Institute of Health Sciences, University of Health Sciences Turkey, Istanbul, Turkey.
This study evaluates the cytotoxicity, apoptosis, and expression of stress-related genes (TP53 and NF-κB) in response to gingiva-colored indirect composite resins used for veneering tooth or implant-supported prostheses or characterization of denture bases. A total of 120 disc-shaped specimens (2 mm thick, 10 mm diameter) gingiva-colored indirect composite resin specimens (Group A: Anaxgum-Anaxdent, Group B: Crealing Paste Gum-Bredent, Group G: Gradia Gum-GC, Group N: SR Nexco GUM-Ivoclar Vivadent) were prepared and divided into four groups (n = 10 per group). Surface wettability was assessed using water contact angle (WCA) measurements.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Acute or chronic liver damage can result in Hepatic Encephalopathy (HE), a potentially fatal neuropsychiatric condition that leads to cerebral and neurological alterations. Dapagliflozin (DAPA), an orally active Sodium/Glucose cotransporter 2 inhibitor with long duration of action. The study aim was to evaluate the potential protective impact of DAPA against HE caused by Thioacetamide (TAA) in rats.
View Article and Find Full Text PDF