98%
921
2 minutes
20
Ants evolved about 140 million years ago and have diversified into more than 15,000 species with tremendous ecological and morphological diversity, yet evolution of the gene regulatory networks (GRNs) underlying this diversification remains poorly understood. Wing polyphenism, the ability of a single genome to produce either winged or wingless castes during development in response to environmental cues, is a nearly universal feature of ants. The underlying wing GRN is evolutionarily labile in worker castes of phylogenetically derived species: it is conserved in winged castes but interrupted at different points in wingless castes of different species. However, it remains unknown whether the wing GRN is interrupted in wingless castes of species from early branching lineages, and if so, whether it is interrupted at similar locations in worker castes of derived species. We therefore used in situ hybridization to assay the expression of nine genes in the wing GRN in wing imaginal discs of larvae from two species from the early branching ('basal') genus Mystrium. These species possess two castes each: Mystrium rogeri has winged queens and wingless workers, and M. oberthueri has wingless queens and wingless workers. In contrast to derived species, we found no evidence of interruption points in the wing GRN kernel of wingless castes. Our finding supports: (1) a "phylogenetic ladder model" of wing GRN evolution, where interruption points move further upstream in the wing GRN as ant lineages become more derived; and (2) that evolutionary lability of the GRN underlying wing polyphenism originated later during ant evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jez.b.22794 | DOI Listing |
Annu Rev Entomol
January 2025
Department of Biology and Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico.
Novel traits in the order Lepidoptera include prolegs in the abdomen of larvae, scales, and eyespot and band color patterns in the wings of adults. We review recent work that investigates the developmental origin and diversification of these four traits from a gene-regulatory network (GRN) perspective. While prolegs and eyespots appear to derive from distinct ancestral GRNs co-opted to novel body regions, scales derive from in situ modifications of a sensory bristle GRN.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2022
Department of Biological Sciences, National University of Singapore, Singapore, 117543;
J Insect Physiol
September 2021
Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy.
In recent years, there has been interest in reduced-risk materials with insecticidal properties for the invasive pest spotted-wing drosophila, Drosophila suzukii. Here, we compared the peripheral sensitivity (via the tip-recording technique, used to monitor the neural activity of gustatory receptor neurons [GRNs]) and palatability (via the Proboscis Extension Reflex [PER]) of chitosan, a polysaccharide derived from chitin, with that of erythritol, a sugar alcohol, to male and female D. suzukii.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2020
Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706;
Organisms have evolved endless morphological, physiological, and behavioral novel traits during the course of evolution. Novel traits were proposed to evolve mainly by orchestration of preexisting genes. Over the past two decades, biologists have shown that cooption of gene regulatory networks (GRNs) indeed underlies numerous evolutionary novelties.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
March 2018
Sorbonne Université, CNRS, Institut d'Ecologie et des Sciences de l'Environnement, iEES, Paris, France.
Ants evolved about 140 million years ago and have diversified into more than 15,000 species with tremendous ecological and morphological diversity, yet evolution of the gene regulatory networks (GRNs) underlying this diversification remains poorly understood. Wing polyphenism, the ability of a single genome to produce either winged or wingless castes during development in response to environmental cues, is a nearly universal feature of ants. The underlying wing GRN is evolutionarily labile in worker castes of phylogenetically derived species: it is conserved in winged castes but interrupted at different points in wingless castes of different species.
View Article and Find Full Text PDF