Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ataxia-telangiectasia (AT) is a rare neurodegenerative disease characterized by an early onset ataxia, oculocutaneous telangiectasia, immunodeficiency, recurrent infections, radio-sensitivity, and a predisposition to malignancy. We present the case of a child with coexistent AT and trisomy X (47,XXX). We used fluorescent in situ hybridization (FISH) to confirm that this person had 47,XXX karyotype in blood cells, bone marrow, fibroblasts, and buccal smear. Standard cytogenetic studies (not banded) were conducted on blood cells. G-banding analysis was performed on bone marrow cells at the time of the leukemia diagnosis. Flow cytometric investigation of lymphocytes and Sanger sequencing of the ATM gene were used for diagnosis confirmation and description. We report the case of an 11-year-old girl at remission after having T cell acute leukemia for 7 years with progressive signs of ataxia-telangiectasia and with additional X chromosome since birth. At the age of 2 years and 7 months, she was diagnosed with pre-T acute leukemia. From the age of four, she had gait abnormalities. AT was established at the age of seven based on clinical signs and laboratory findings (increased alpha fetoprotein-AFP [227]) and confirmed by detecting compound heterozygous truncating mutations in the ATM gene (p.Y705X and p.L2312I). These genetic findings have not been previously reported in AT and our "double hit" case demonstrates the value of careful clinical evaluation of children with an established genetic diagnosis. Measurement of AFP levels should be considered in patients with neurologic abnormalities after leukemia treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00251-018-1056-4DOI Listing

Publication Analysis

Top Keywords

acute leukemia
12
11-year-old girl
8
girl remission
8
remission cell
8
cell acute
8
blood cells
8
bone marrow
8
atm gene
8
leukemia
5
novel biallelic
4

Similar Publications

Background: Relapsed or refractory cases of pediatric acute myeloid leukemia (AML) have poor outcomes despite advancements in chemotherapy and hematopoietic stem cell transplantation (HSCT). While a second HSCT is often a salvage option, its outcomes vary widely, and prognostic factors remain unclear.

Objectives: This study aimed to evaluate outcomes and identify prognostic factors in pediatric patients with AML who underwent multiple HSCTs.

View Article and Find Full Text PDF

Moyamoya syndrome (MMS) is a chronic vasculopathy characterized by progressive stenosis of intracerebral arteries, leading to an increased risk of stroke. Children with Down syndrome (DS) are at an increased risk of co-occurring medical conditions, including MMS and leukemia. We report four patients with the triad of DS, MMS, and acute lymphoblastic leukemia (ALL).

View Article and Find Full Text PDF

Acute leukaemias are the commonest cancers in children and young people (CYP). Off-treatment surveillance is assumed to improve relapse detection, but whether this affects subsequent survival and quality of life is unclear. This systematic review searched 13 databases and two trial registries in December 2022.

View Article and Find Full Text PDF

Blinatumomab is a bispecific T-cell engager that has recently transformed front-line treatment for many patients with Philadelphia chromosome (Ph)-negative B-cell acute lymphoblastic leukemia (B-ALL). It was originally studied in relapsed/refractory disease, then moved to targeting measurable residual disease (MRD), and has since been shown to improve outcomes for almost every age group when added to consolidation chemotherapy. The evidence supporting blinatumomab is most robust in adult and standard-risk pediatric age groups, but its benefit in adolescents and young adults and high-risk pediatric patients is not yet understood.

View Article and Find Full Text PDF

Targeting O-GlcNAcylated METTL3 impedes MDS/AML progression via diminishing SRSF1 mA modification.

Mol Ther

September 2025

Xi'an No. 1 Hospital, First Affiliated Hospital of Northwest University, School of Medicine, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology of Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an,

N6-methyladenosine (mA) modification, primarily regulated by methyltransferase-like protein 3 (METTL3), plays a pivotal role in RNA metabolism and leukemogenesis. However, the post-translational mechanisms governing METTL3 stability and function remain incompletely understood. Given the widespread occurrence of O-GlcNAcylation on nuclear and cytosolic proteins, we hypothesized that METTL3 might undergo O-GlcNAcylation, thereby influencing its stability and oncogenic function in myeloid malignancies.

View Article and Find Full Text PDF