Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For the first time, intense red color composite of SiO@LaOF:Eu core-shell nanostructures (NS) were fabricated via facile solvothermal method followed by thermal treatment. The obtained core-shell particles display better spherical shape and non-agglomeration with a narrow size distribution. Photoluminescence (PL) emission spectra exhibits intense peaks at ∼593 nm, 611 nm, 650 nm corresponds to D → F (J = 0, 1 and 2) Eu transitions respectively. The spectral intensity parameters and Eu-O ligand behaviors are estimated by means of Judd-Ofelt (J-O) theory. CIE co-ordinates are found to be (x = 0.63, y = 0.36) which is very close to standard NTSC values (x = 0.67, y = 0.33). CCT value is ∼3475 K which is less than 5000 K, as a result this phosphor is suitable for warm light emitting diodes. The optimized core-shell SiO (coat III)@LaOF:Eu (5 mol%) was used as a fluorescent labeling marker for the visualization of latent fingerprints on both porous and non-porous surfaces. Obtained fingerprints are highly sensitive and selective also no background hindrance which enables level-I to level-III fingerprint ridge characteristics. Observed results indicate that the significant improvement in luminescence of coreshell NS can be explored as a sensitive functional nanopowder for advanced forensic and solid state lightning applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.01.093DOI Listing

Publication Analysis

Top Keywords

sio@laofeu core-shell
8
visualization latent
8
latent fingerprints
8
core-shell functional
4
functional nanomaterials
4
nanomaterials sensitive
4
sensitive visualization
4
fingerprints wled
4
wled applications
4
applications time
4

Similar Publications

Purpose: Tumor hypoxia is a key barrier to successful delivery and activity of anti-cancer agents. To tackle this, we designed hypoxia-responsive Au-PEI-Azo-mPEG nanoparticles (NPs) denoted as APAP NPs for targeted delivery of hypoxia-activated prodrug (HAP), tirapazamine (TPZ) to hypoxic breast cancer cells.

Methods: AuNPs were first synthesized.

View Article and Find Full Text PDF

The efficient and sustainable remediation of contaminated water calls for catalytic systems that must clean broadly, endure widely, and last repeatedly. In this regard, we report the development of sulfonate-functionalized core-shell hydrogel beads embedded with synthesized gold nanoparticles (AuNPs) that exhibit intrinsic oxidase-like activity without requiring external light or chemical oxidants. The sulfonate ligands modulate the surface electronic environment of the AuNPs, facilitating singlet oxygen generation via a nonplasmonic, radiationless mechanism.

View Article and Find Full Text PDF

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF

Precisely structured nanoclusters provide ideal platforms for elucidating structural evolution and structure-activity relationships. However, mechanistic understanding of dynamic core-shell rearrangements has long been impeded by the elusive nature of intermediates during transformation processes. Here, we show that ligand engineering-driven asymmetric thiolate exchange enables atomic-level visualization of structural evolution, thereby overcoming the long-standing challenge of intermediate capture.

View Article and Find Full Text PDF

Engineering of Core-Shell Pd/SSZ-13@AlO Zeolite: Unlocking Superior NO Adsorption and Chemical Durability.

Environ Sci Technol

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Pd-zeolites are promising passive NO adsorber (PNA) materials for mitigating cold-start emissions from lean-burn engines. However, their practical deployment is constrained by insufficient densities and dispersion of isolated Pd active sites as well as their susceptibility to hydrothermal degradation and phosphorus poisoning encountered in vehicle exhaust environments. Herein, we develop a rationally engineered core-shell Pd/SSZ-13@AlO composite, featuring a Pd/SSZ-13 core encapsulated within a mesoporous AlO shell.

View Article and Find Full Text PDF