98%
921
2 minutes
20
Whether plants are able to adapt to environmental changes depends on their genetic characteristics and phenotypic plastic responses. We investigated the phenotypic responses of 7 populations of an important dominant species in semi-arid steppe of China - Stipa grandis, and then distinguished which adaptive mechanism(s), phenotypic plasticity or local adaptation, was/were involved in this species to adapt to environmental changes. (1) All traits were significantly influenced by the interaction of population and growth condition and by population in each condition, and inter-population variability (CV) was larger in the field than in the common garden for 8/9 traits, indicating that both phenotypic plasticity and genetic differentiation controlled the phenotypic differences of S. grandis. (2) From a functional standpoint, the significant relationships between the values of traits in the common garden and the environmental variables in their original habitats couldn't support local habitat adaptation of these traits. (3) Low CV, low quantitative differentiation among populations (Q ), and low plasticity shown in the western populations indicated the very low adaptive potential of S. grandis to environmental changes. (4) From the original habitats to the common garden which is far away from S. grandis distribution region, positive phenotypic responses were found in several populations, indicating that some original habitats have become unfavorable for S. grandis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816645 | PMC |
http://dx.doi.org/10.1038/s41598-018-21557-w | DOI Listing |
Front Plant Sci
August 2025
Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.
is the most widely cultivated high-protein forage crop globally. However, its cultivation in high-latitude and cold regions of China is significantly hindered by low-temperature stress, particularly impacting the root system, the primary functional tissue crucial for winter survival. The physiological and molecular mechanisms underlying the root system's adaptation and tolerance to low temperatures remain poorly understood.
View Article and Find Full Text PDFAllergy
September 2025
Department of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK.
Mast cells (MCs) rapidly adapt to the microenvironment due to the plethora of cytokine receptors expressed. Understanding microenvironment-primed immune responses is essential to elucidate the phenotypic/functional changes MCs undergo, and thus understand their contribution to diseases and predict the most effective therapeutic strategies. We exposed primary human MCs to cytokines mimicking a T1/pro-inflammatory (IFNγ), T2/allergic (IL-4 + IL-13), alarmin-rich (IL-33) and pro-fibrotic/pro-tolerogenic (TGFβ) microenvironment.
View Article and Find Full Text PDFAm J Bot
September 2025
Research Unit Modeling Nature, Universidad de Granada, Granada.
Premise: Floral pigments primarily serve to attract pollinators through color display and also contribute to protection against environmental stress. Although pigment composition can be plastically altered under stress, its impact on pollinator color perception remains poorly understood. Moricandia arvensis (Brassicaceae) exhibits seasonal floral dimorphism, with lilac spring flowers and white summer flowers.
View Article and Find Full Text PDFEMBO J
September 2025
Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720, USA.
A variety of stressors, including environmental insults, pathological conditions, and transition states, constantly challenge cells that, in turn, activate adaptive responses to maintain homeostasis. Mitochondria have pivotal roles in orchestrating these responses that influence not only cellular energy production but also broader physiological processes. Mitochondria contribute to stress adaptation through mechanisms including induction of the mitochondrial unfolded protein response (UPR) and the integrated stress response (ISR).
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
GFZ Helmholtz Centre for Geosciences, Potsdam, Germany.
Eukaryotic algae-dominated microbiomes thrive on the Greenland Ice Sheet (GrIS) in harsh environmental conditions, including low temperatures, high light, and low nutrient availability. Chlorophyte algae bloom on snow, while streptophyte algae dominate bare ice surfaces. Empirical data about the cellular mechanisms responsible for their survival in these extreme conditions are scarce.
View Article and Find Full Text PDF