Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Adapting behavior based on category knowledge is a fundamental cognitive function, which can be achieved via different learning strategies relying on different systems in the brain. Whereas the learning of typical category members has been linked to implicit, prototype abstraction learning, which relies predominantly on prefrontal areas, the learning of exceptions is associated with explicit, exemplar-based learning, which has been linked to the hippocampus. Stress is known to foster implicit learning strategies at the expense of explicit learning. Procedural, prefrontal learning and cognitive control processes are reflected in frontal midline theta (4-8 Hz) oscillations during feedback processing. In the current study, we examined the effect of acute stress on feedback-based category learning of typical category members and exceptions and the oscillatory correlates of feedback processing in the EEG. A computational modeling procedure was applied to estimate the use of abstraction and exemplar strategies during category learning. We tested healthy, male participants who underwent either the socially evaluated cold pressor test or a nonstressful control procedure before they learned to categorize typical members and exceptions based on feedback. The groups did not differ significantly in their categorization accuracy or use of categorization strategies. In the EEG, however, stressed participants revealed elevated theta power specifically during the learning of exceptions, whereas the theta power during the learning of typical members did not differ between the groups. Elevated frontal theta power may reflect an increased involvement of medial prefrontal areas in the learning of exceptions under stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/jocn_a_01241 | DOI Listing |