Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Plant cell walls have important roles during all phases of plant growth and development. Polysaccharides are the major components of the primary walls surrounding growing plant cells, together with small amounts of protein and minerals. Secondary walls that are deposited when a cell has ceased to grow are also composed predominantly of polysaccharides, although lignin may account for up to 20% w/w of these walls. The types of polysaccharides and their structure and abundance often vary greatly in the cell walls of different plant species, different cell types, and different developmental stages. Significant changes in structure and composition of cell wall have been described in various types of plant senescence. Here we describe a general method for the isolation of cell wall polysaccharides as their alcohol-insoluble residues (AIR) and procedures for the determination of the neutral and acidic monosaccharides present in the wall.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7672-0_25 | DOI Listing |