A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Long-Term Antibacterial Performance and Bioactivity of Plasma-Engineered Ag-NPs/TiO₂. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We prepared TiO2 nanotubes (NT) on commercially pure titanium (cp-Ti) substrate by plasma electrolyte oxidation and adapted magnetron sputtering for incorporation of Ag-nanoparticles (Ag-NPs) onto the nanotubes (Ag-NPs/TiO2 nanotube). Power input to the Ag target per unit time was varied (5, 10, 15 W/cm2) to fabricate different shapes of Agnanoparticles onto the nanotubes while net energy input was fixed by maintaining a constant total sputter time (30, 15, 10 s, respectively). For investigation of experimental samples' characteristics, FE-SEM, TEM, EDS, XRD, XPS, SPM analysis and contact angles measurement was carried out. Through these characterization, plasma engineered Ag-NPs was successfully formed on/in the entire nanotube structure. In terms of antibacterial ability, plasma engineered Ag-NPs/TiO2 nanotubes samples significantly reduced S. aureus colony numbers compared with control. Also, simulated body fluid immersion tests with hydroxyapatite showed ion precipitation onto the surface of all experimental groups, confirmed by XRD and EDS analysis. However, plasma engineered Ag-NPs/TiO2 nanotubes groups were not cytotoxic. Furthermore, MC3T3-E1 cells were cultured on Ag-NPs/TiO2 nanotubes groups to evaluate the effect of nanostructured surface on cell functionality such as a cell proliferation and ALP activity. Ag-NPs/TiO2 nanotubes have both biocompatible and antibacterial characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2016.2310DOI Listing

Publication Analysis

Top Keywords

ag-nps/tio2 nanotubes
16
plasma engineered
12
engineered ag-nps/tio2
8
nanotubes groups
8
nanotubes
7
ag-nps/tio2
5
long-term antibacterial
4
antibacterial performance
4
performance bioactivity
4
bioactivity plasma-engineered
4

Similar Publications