A macrophysiology approach to watershed science and management.

Sci Total Environ

Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.

Published: June 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Freshwaters are among the most imperiled ecosystems on the planet such that much effort is expended on environmental monitoring to support the management of these systems. Many traditional monitoring efforts focus on abiotic characterization of water quantity or quality and/or indices of biotic integrity that focus on higher scale population or community level metrics such as abundance or diversity. However, these indicators may take time to manifest in degraded systems and delay the identification and restoration of these systems. Physiological indicators manifest rapidly and portend oncoming changes in populations that can hasten restoration and facilitate preventative medicine for degraded habitats. Therefore, assessing freshwater ecosystem integrity using physiological indicators of health is a promising tool to improve freshwater monitoring and restoration. Here, we discuss the value of using comparative, longitudinal physiological data collected at a broad spatial (i.e. watershed) scale (i.e. macrophysiology) as a tool for monitoring aquatic ecosystem health within and among local watersheds to develop timely and effective management plans. There are emerging tools and techniques available for rapid, cost-effective, and non-lethal physiological sampling and we discuss how these can be integrated into management using fish as sentinel indicators in freshwater. Although many examples of this approach are relatively recent, we foresee increasing use of macrophysiology in monitoring, and advocate for the development of more standard tools for consistent and reliable assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.01.069DOI Listing

Publication Analysis

Top Keywords

physiological indicators
8
monitoring
5
macrophysiology approach
4
approach watershed
4
watershed science
4
management
4
science management
4
management freshwaters
4
freshwaters imperiled
4
imperiled ecosystems
4

Similar Publications

Importance: Cannabis is the most commonly used illicit drug, with 10% to 30% of regular users developing cannabis use disorder (CUD), a condition linked to altered hippocampal integrity. Evidence suggests high-intensity interval training (HIIT) enhances hippocampal structure and function, with this form of physical exercise potentially mitigating CUD-related cognitive and mental health impairments.

Objective: To determine the impact of a 12-week HIIT intervention on hippocampal integrity (ie, structure, connectivity, biochemistry) compared with 12 weeks of strength and resistance (SR) training in CUD.

View Article and Find Full Text PDF

The human auditory system must distinguish relevant sounds from noise. Severe hearing loss can be treated with cochlear implants (CIs), but how the brain adapts to electrical hearing remains unclear. This study examined adaptation to unilateral CI use in the first and seventh months after CI activation using speech comprehension measures and electroencephalography recordings, both during passive listening and an active spatial listening task.

View Article and Find Full Text PDF

Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.

View Article and Find Full Text PDF

Purpose: Adaptive optics scanning light ophthalmoscopy (AOSLO) paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of neuronal activity in retinal ganglion cells (RGCs) at single cell resolution in the living eye. However, the inner limiting membrane (ILM) restricts viral transduction to the fovea in humans and non-human primates, hindering both therapeutic intervention and physiological study of the retina. To address this issue, we explored peeling the ILM before intravitreal injection to expand calcium imaging beyond the fovea in the living primate eye.

View Article and Find Full Text PDF

Population-level bistability in quorum sensing.

mBio

September 2025

Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.

Quorum sensing (QS) is a widespread signaling mechanism in bacteria that coordinates collective behaviors according to population density. A foundational assumption in this field is that QS functions as a gene expression switch that synchronizes responses at the population level. While some studies indeed report homogeneous on/off transitions, others report heterogeneity at the cellular level, challenging the canonical view.

View Article and Find Full Text PDF