Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this paper, we show that diffusion phenomena in three-dimensional discontinuous media can be described as a random walk by two simple interface-correction methods, namely step-balance and fictitious-velocity corrections, which are completely different in a physical picture but equivalent in that the continuity of the random walk at interfaces is considered. In both corrections, asymmetric interface permeability of a random walker, which comes from ensuring the continuity, causes apparent confinement of the walker in higher-diffusivity layers for benchmark tests on heat diffusion in two-phase multilayered systems. Effective thermal conductivities (walker diffusivities) computed from the trajectories are in excellent agreement with the series and parallel conduction formulas, indicating the equivalence of the two corrections and the importance of ensuring the continuity of a random walk at interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.96.032135 | DOI Listing |