98%
921
2 minutes
20
A good understanding of red cell indexes can aid medical students in a considerable manner, serving as a basis to unravel both concepts in red cell physiology and abnormalities associated with the same. In this study, we tried to assess whether an interactive animation was helpful in improving student comprehension and understanding of red cell indexes compared with conventional classroom teaching. Eighty-eight first-year MBBS students participated, of which 44 were assigned to group A and 44 were assigned to group B after randomization. After further creation of smaller groups, students were provided with 45 min to revise red cell indexes, after which they were required to complete a multimodal questionnaire. Group A subgroups used written material for revision, whereas group B subgroups had access to an interactive animation. After completion of the questionnaire, group A students also used the animation after which feedback was collected from all students. Efficacy of the animation to improve learning and retention was demonstrated, as group B students scored significantly higher than group A students on the questionnaire ( P = 0.0003). A clear majority of the students agreed/strongly agreed that the animation was easy to operate, conveyed important concepts efficiently, and improved their knowledge of related clinical aspects as well. From the results and feedback, we found that the animation was a simple, well-received model, which, by significantly improving student performance, corroborated our hypothesis that inclusion of interactive animation into student curriculum can advance their academic attainment, compared with didactic teaching alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/advan.00142.2017 | DOI Listing |
Channels (Austin)
December 2025
Biorheology Research Laboratory, Faculty of Health, Griffith University, Gold Coast, Australia.
The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.
View Article and Find Full Text PDFBraz Oral Res
September 2025
Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, Ribeirão Preto, SP, Brazil.
Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.
View Article and Find Full Text PDFJ Infect Dis
September 2025
Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA USA.
Sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the microvasculature is a major virulence determinant. While the sequestration of mature stage parasites (trophozoite and schizonts) to vascular endothelium is well established, the conditions that promote ring-stage IE sequestration is less understood. Here, we observed in ring-stage parasites that febrile exposure increased transcript levels of several exported parasite genes involved in the trafficking of the P.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America.
Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2025
School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
There is no vaccine for severe malaria. STEVOR antigens on the surface of -infected red blood cells are implicated in severe malaria and are targeted by neutralizing antibodies, but their epitopes remain unknown. Using computational immunology, we identified highly immunogenic overlapping B- and T-cell epitopes (referred to as multiepitopes, 7-27 amino acids) in the semiconserved domain of four STEVORs linked with severe malaria and clinical immunity.
View Article and Find Full Text PDF