98%
921
2 minutes
20
The cholinergic system in the brain plays crucial roles in regulating sensory and motor functions as well as cognitive behaviors by modulating neuronal activity. Understanding the organization of the cholinergic system requires a complete map of cholinergic neurons and their axon arborizations throughout the entire brain at the level of single neurons. Here, we report a comprehensive whole-brain atlas of the cholinergic system originating from various cortical and subcortical regions of the mouse brain. Using genetically labeled cholinergic neurons together with whole-brain reconstruction of optical images at 2-μm resolution, we obtained quantification of the number and soma volume of cholinergic neurons in 22 brain areas. Furthermore, by reconstructing the complete axonal arbors of fluorescently labeled single neurons from a subregion of the basal forebrain at 1-μm resolution, we found that their projections to the forebrain and midbrain showed neuronal subgroups with distinct projection specificity and diverse arbor distribution within the same projection area. These results suggest the existence of distinct subtypes of cholinergic neurons that serve different regulatory functions in the brain and illustrate the usefulness of complete reconstruction of neuronal distribution and axon projections at the mesoscopic level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777024 | PMC |
http://dx.doi.org/10.1073/pnas.1703601115 | DOI Listing |
Br J Pharmacol
September 2025
Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing, China.
Background And Purpose: The pathological role of the bile acid receptor TGR5/GPBA in Alzheimer's disease (AD) is not fully understood. We investigated the pharmacological effects and mechanisms of TGR5 in AD model mice.
Experimental Approach: TGR5 expression was assessed in AD mice using immunofluorescence and immunoblotting.
Acta Histochem
September 2025
Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1‑1‑1 Minami‑Kogushi, Ube 755‑8505, Japan. Electronic address:
Cholinergic neurons in the basal forebrain cholinergic nuclei (BFCN) and neostriatum (CPu) play key roles in learning, attention, and motor control. The loss of cholinergic neurons causes major neurodegenerative diseases such as Alzheimer's disease. This study aimed to elucidate the molecular diversity of choline acetyltransferase immunoreactive (ChAT-ir) neurons in these brain regions.
View Article and Find Full Text PDFJ Neurosci Methods
September 2025
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia. Electronic address:
Background: Most researchers rely on popular promoters like the synthetic CAG promoter or human synapsin promoter to transduce various brain neurons. However, their effectiveness in transducing forebrain cholinergic neurons remains unclear.
New Method: We compared efficacy of transduction of cholinergic neurons and parvalbumin-positive neurons in the medial septal area of rats and mice by adeno-associated viruses (AAVs) carrying the green fluorescent protein (GFP) marker gene under three distinct promoters-CAG, synapsin, and the mouse choline acetyltransferase (CHAT) promoter.
Eur J Pharmacol
September 2025
Eisai, Inc., 200 Metro Blvd., Nutley, NJ, 07110, USA. Electronic address:
Phosphodiesterase 9 (PDE9) is an enzyme that hydrolyzes cyclic guanosine monophosphate (cGMP)-a second messenger that regulates neuronal plasticity and memory function. PDE9 inhibition has been shown to enhance cognitive function in rodents, underlining the potential of PDE9 inhibitors (PDE9Is) as novel therapeutics for cognitive dysfunction. Considering the critical role of nitric oxide (NO)-cGMP signaling cascade in acetylcholine (ACh) release, the combination of PDE9Is and acetylcholinesterase inhibitors may synergistically elevate ACh levels in the brain.
View Article and Find Full Text PDFPLoS One
September 2025
Center for Hypothalamic Research and Department of Internal Medicine, UT Southwestern Medical Center, Harry Hines blvd, Dallas, Texas, Unites States of America.
The anti-inflammatory cholinergic pathway describes the interaction between cholinergic vagal nerves and splenic immune cells, yet the exact mechanisms underlying the anti-inflammatory cholinergic pathway remain disputed. Here, we mapped the expression of key molecular components of the anti-inflammatory cholinergic pathway in the adult mouse using RNAScope in situ hybridization (ISH) and quantitative PCR (qPCR). In C57BL/6J wild-type male mice, we observed the expression of choline acetyltransferase (Chat) and alpha 7 nicotinic acetylcholine receptor (Chrna7) in various autonomic neurons throughout the body, but not in the spleen, even after bacterial lipopolysaccharide (LPS) treatment.
View Article and Find Full Text PDF