Primary Motor Neuron Culture to Promote Cellular Viability and Myelination.

Methods Mol Biol

Multiscale Mechanical Design Laboratory, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.

Published: July 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A culture system that can recapitulate myelination in vitro will not only help us to better understand the mechanism of myelination and demyelination but also identify possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC co-culture system, MNs survive over 3 weeks and extend long axons. Both viability and axon growth of MNs in the co-culture are markedly enhanced as compared to those of MN monocultures. Co-labeling of myelin basic proteins and neuronal cell microtubules reveals that SCs form myelin sheaths by wrapping around the axons of MNs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7571-6_32DOI Listing

Publication Analysis

Top Keywords

myelination culture
8
culture system
8
motor neurons
8
axons mns
8
mns
5
primary motor
4
motor neuron
4
culture
4
neuron culture
4
culture promote
4

Similar Publications

The therapeutic effects of various tonic traditional Chinese medicines on demyelinating diseases.

Metab Brain Dis

September 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, Hubei, China.

Demyelinating diseases, a prevalent group of neurological disorders, lead to impaired nerve conduction and sensorimotor dysfunctions. Despite existing treatments demonstrating some efficacy, their limitations have driven research toward exploring natural remedies. This review summarizes the therapeutic potential of four traditional tonic Chinese herbal medicines-ginsenosides, deer antler polypeptides, resveratrol, and ginkgo leaf extracts-for demyelinating diseases.

View Article and Find Full Text PDF

GLP-1R activation restores Gas6-driven efferocytosis in senescent foamy macrophages to promote neural repair.

Redox Biol

September 2025

Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, Jiangsu, 226000, China; Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu, 226000, China. Elec

Spinal cord injury (SCI) is a devastating condition characterized by the accumulation of myelin debris (MD), persistent neuroinflammation, and impaired neural regeneration. Although macrophages are pivotal for MD clearance, the impact of excessive MD phagocytosis on macrophage phenotype and function remains poorly understood. Building upon our prior evidence that exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, mitigates microglia-driven neuroinflammation post-SCI, this study elucidates the therapeutic efficacy and underlying mechanisms of Ex-4 in alleviating macrophage senescence, restoring efferocytotic capacity, and facilitating neural repair.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the central nervous system (CNS) and is most often clinically presented in a relapsing form. Within MS lesions, oligodendrocyte progenitor cells (OPCs) differentiate into mature myelinating oligodendrocytes and mediate repair. A further understanding of the molecular mechanisms responsible for OPC differentiation will undoubtedly influence the direction of future treatments in MS.

View Article and Find Full Text PDF

Tumor surgery or trauma in the maxillofacial region may cause injuries to peripheral nerves, such as facial nerves. The gold standard of treatment for peripheral nerve injury has been autologous nerve grafting. Since new peripheral nerve regeneration technologies are required, three-dimensional (3D) structures fabricated only from cells by using Bio 3D printers are attracting attention.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a devastating condition for which no curative therapy is currently available. The pathology of SCI is underscored by an inflammatory lesion at the site of injury that exacerbates damage and impedes recovery. Immunomodulation is a promising strategy for SCI repair and thus there is enhanced focus on identifying and testing novel immunotherapeutics.

View Article and Find Full Text PDF