Modeling of the oxygen reduction reaction for dense LSM thin films.

Phys Chem Chem Phys

National Energy Technology Laboratory, U.S. DOE, 3610 Collins Ferry Rd, Morgantown, WV 26505, USA.

Published: November 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the present study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (LaSr)MnO film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation on the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp05899cDOI Listing

Publication Analysis

Top Keywords

oxygen reduction
16
reduction reaction
16
oxygen partial
12
oxygen
9
lsm thin
8
thin films
8
dense thin
8
defect chemistry
8
surface adsorption
8
adsorption dissociation
8

Similar Publications

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Background: Voghera pepper (VP) extracts were demonstrated to have anti-oxidant ability in several cell types.

Purpose: This study aimed to assess whether VP-extracts could lower oxidative stress and modulate thyroid cancer (TC) cells behavior .

Methods: Extracts were analyzed using the LC-DAD-MS system.

View Article and Find Full Text PDF

The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFU) are a prevalent complication of diabetes, leading to significant morbidity, mortality, and amputation rates. Chronic non-healing DFU often result from peripheral neuropathy, microvascular issues, and infection, with poor blood and oxygen supply being critical factors in delayed healing. The development of new treatments to promote blood supply and accelerate ulcer healing is a significant area of research for DFU management.

View Article and Find Full Text PDF

Aims: Cardiogenic shock remains a significant cause of mortality despite multiple advancements in medical interventions. Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) provides crucial circulatory support but also increases left ventricular (LV) after-load, potentially worsening outcomes. Effective LV unloading strategies can enhance patient survival during VA-ECMO treatment.

View Article and Find Full Text PDF