Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/aims: We investigated how diosgenin, a steroidal sapogenin, has anti-tumor necrosis factor-α (TNF-α) effects in human aortic endothelial cells (HAECs).

Methods: Tumor necrosis factor receptor 1 (TNFR1) was assessed by Western blot analysis. Intracellular Ca2+ was measured using Fluo-4 AM. Immunofluorescence staining was performed for a disintegrin and metalloprotease 10 (ADAM10).

Results: Diosgenin (1 ∼ 100 nM) induced ectodomain shedding of TNFR1 within 30 min and attenuated TNF-α-induced intercellular adhesion molecule-1 (ICAM-1) expression. Upon treatment with diosgenin, extracellular Ca2+ entered into the cells via L-type calcium channels, whereas diosgenin-induced ectodomain shedding of TNFR1 was almost completely inhibited by BAPTA-AM (intracellular Ca2+ chelator), verapamil (L-type calcium channel antagonist) and the absence of extracellular Ca2+. Diosgenin caused translocation of ADAM10 to the cell surface, which was mediated by extracellular Ca2+ influx. Depletion of ADAM10 prevented diosgenin-induced ectodomain shedding of TNFR1 and abolished the inhibitory effect of diosgenin on TNF-α-induced ICAM-1 expression. Diosgenin did not induce extracellular Ca2+ influx and ectodomain shedding of TNFR1 in cells depleted of 1,25D3-membrane associated rapid response steroid-binding receptor (1,25D3-MARRS receptor/ERp57).

Conclusion: Diosgenin elicits L-type calcium channel-mediated extracellular Ca2+ influx, and thereby induces ADAM10-mediated ectodomain shedding of TNFR1. This effect of diosgenin was exerted through 1,25D3-MARRS receptor/ERp57.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000484396DOI Listing

Publication Analysis

Top Keywords

ectodomain shedding
24
shedding tnfr1
20
extracellular ca2+
20
l-type calcium
12
ca2+ influx
12
diosgenin
9
125d3-marrs receptor/erp57
8
intracellular ca2+
8
icam-1 expression
8
diosgenin-induced ectodomain
8

Similar Publications

Triggering receptor expressed on myeloid cells 2 (TREM2) dysfunction contributes to Alzheimer's disease pathogenesis, yet current therapeutics cannot prevent ADAM-mediated receptor shedding that diminishes signaling efficacy. Using Affinity Selection-Mass Spectrometry (AS-MS) screening, we identified As48, a novel small molecule that binds TREM2 with high affinity. Biophysical validation confirmed s 7-fold selectivity over TREM1.

View Article and Find Full Text PDF

ADAM17 is a cell surface protease that controls the release of the ectodomains of signaling proteins including EGFR ligands and the primary inflammatory cytokine TNF. Reflecting this important role in signaling, dysregulated ADAM17 activity is linked to many human diseases including immunodeficiency, inflammatory bowel disease (IBD), rheumatic arthritis, cancer, and Alzheimer's disease. iRhom2, a pseudoprotease of the rhomboid-like superfamily, has evolved to be a multifunctional regulatory co-factor of ADAM17.

View Article and Find Full Text PDF

Leucocyte (L)-selectin is essential for mounting protective immunity to pathogens. As well as regulating leucocyte recruitment, it also regulates their activation and differentiation inside tissues thereby shaping local immune responses. The biochemical signals that regulate these diverse functions of L-selectin are poorly understood.

View Article and Find Full Text PDF

UNC5B is an isoform-dependent target for ectodomain shedding.

J Biochem

July 2025

Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan.

Ectodomain shedding (shedding) is a processing mechanism that cleaves the juxtamembrane region of membrane proteins and solubilizes almost the entire extracellular domain. Shedding irreversibly regulates the localization and function of membrane proteins; however, its physiological role is not fully understood. Previously, we showed that the shedding susceptibility of multiple membrane proteins is altered by skipping or inclusion of skipping exon(s) that encode their juxtamembrane region.

View Article and Find Full Text PDF

Ricin is a highly potent toxin that causes severe lung injury upon inhalation by initiating a complex cascade of cellular responses that ultimately leads to cell death. The low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor involved in various physiological processes, including ricin-mediated toxicity. This study explores the role of LRP1 shedding in the development of ricin-induced lung injury.

View Article and Find Full Text PDF