Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A combination of passive, non-invasive and nonintrusive smart monitoring technologies is currently transforming healthcare. These technologies will soon be able to provide immediate health related feedback for a range of illnesses and conditions. Such tools would be game changing for serious public health concerns, such as seasonal cold and flu, for which early diagnosis and social isolation play a key role in reducing the spread. In this regard, this paper explores, for the first times, the automated classification of individuals with Upper Respiratory Tract Infections (URTI) using recorded speech samples. Key results presented indicate that our classifiers can achieve similar results to those seen in related health-based detection tasks indicating the promise of using computational paralinguistic analysis for the detection of URTI related illnesses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2017.8037686 | DOI Listing |