Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Rett syndrome (RTT) is a severe neurodevelopmental disorder that can cause pervasive wakeful respiratory disturbances that include tachypnea, breath-holding, and central apnea. Quantitative analysis of these respiratory disturbances in RTT is considered a promising outcome measure for clinical trials. Currently, machine learning methodologies have not been employed to automate the classification of RTT respiratory disturbances. In this paper, we propose using temporal, flow, and autocorrelation features taken from the respiratory inductance plethsymography chest signal. We tested the performance of six classifiers including: Support Vector Machine, Restricted-Boltzmann-Machine, Back-propagation, Levenberg-Marquardt, and Decision-Fusion. We evaluate this classification in two modalities: (1) a subject-independent modality (leave-one-subject-out) obtaining the best F1 score in 93.67%, and (2) a trial-independent modality (leave-one-trial-out per subject) obtaining the best F1 score in 78.21%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2017.8036857 | DOI Listing |