A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Most probable number with visual based LAMP for the quantification of reductive dehalogenase genes in groundwater samples. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The remediation of chlorinated solvent contaminated sites frequently involves bioaugmentation with mixed cultures containing Dehalococcoides mccartyi. Their activity is then examined by quantifying reductive dehalogenase (RDase) genes. Recently, we described a rapid, low cost approach, based on loop mediated isothermal amplification (LAMP), which allowed for the visual detection of RDase genes from groundwater. In that study, samples were concentrated (without DNA extraction), incubated in a water bath (avoiding the use of a thermal cycler) and amplification was visualized by the addition of SYBR green (post incubation). Despite having a detection limit less than the threshold recommended for effective remediation, the application of the assay was limited because of the semi-quantitative nature of the data. Moreover, the assay was prone to false positives due to the aerosolization of amplicons. In this study, deoxyuridine triphosphate (dUTP) and uracil DNA glycosylase (UNG) were incorporated into the assay to reduce the probability of false positives. Optimization experiments revealed a UNG concentration of 0.2units per reaction was adequate for degrading trace levels of AUGC based contamination (~1.4×10 gene copies/reaction) without significant changes to the detection limit (~100 gene copies/reaction). Additionally, the optimized assay was used with the most probable number (MPN) method to quantify RDase genes (vcrA and tceA) in multiple groundwater samples from a chlorinated solvent contaminated site. Using this approach, gene concentrations were significantly correlated to concentrations obtained using traditional methods (qPCR and DNA templates). Although the assay underestimated RDase genes concentrations, a strong correlation (R=0.78 and 0.94) was observed between the two data sets. The regression equations obtained will be valuable to determine gene copies in groundwater using the newly developed, low cost and time saving method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2017.10.003DOI Listing

Publication Analysis

Top Keywords

rdase genes
16
probable number
8
reductive dehalogenase
8
genes groundwater
8
groundwater samples
8
chlorinated solvent
8
solvent contaminated
8
low cost
8
detection limit
8
false positives
8

Similar Publications