Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Discoidin, CUB, and LCCL domain containing 2 (DCBLD2) is a neuropilin-like transmembrane scaffolding receptor with known and anticipated roles in vascular remodeling and neuronal positioning. DCBLD2 is also up-regulated in several cancers and can drive glioblastomas downstream of activated epidermal growth factor receptor. While a few studies have shown either a positive or negative role for DCBLD2 in regulating growth factor receptor signaling, little is known about the conserved signaling features of DCBLD family members that drive their molecular activities. We previously identified DCBLD2 tyrosine phosphorylation sites in intracellular YxxP motifs that are required for the phosphorylation-dependent binding of the signaling adaptors CRK and CRKL (CT10 regulator of kinase and CRK-like). These intracellular YxxP motifs are highly conserved across vertebrates and between DCBLD family members. Here, we demonstrate that, as for DCBLD2, DCBLD1 YxxP motifs are required for CRKL-SH2 (Src homology 2) binding. We report that Src family kinases (SFKs) and Abl differentially promote the interaction between the CRKL-SH2 domain and DCBLD1 and DCBLD2, and while SFKs and Abl each promote DCBLD1 and DCBLD2 binding to the CRKL-SH2 domain, the effect of Abl is more pronounced for DCBLD1. Using high-performance liquid chromatography coupled with tandem mass spectrometry, we quantified phosphorylation at several YxxP sites in DCBLD1 and DCBLD2, mapping site-specific preferences for SFKs and Abl. Together, these data provide a platform to decipher the signaling mechanisms by which these novel receptors drive their biological activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029619PMC
http://dx.doi.org/10.1042/BCJ20170615DOI Listing

Publication Analysis

Top Keywords

dcbld1 dcbld2
16
yxxp motifs
12
sfks abl
12
dcbld2
9
growth factor
8
factor receptor
8
dcbld family
8
family members
8
intracellular yxxp
8
motifs required
8

Similar Publications

FYN and ABL Regulate the Interaction Networks of the DCBLD Receptor Family.

Mol Cell Proteomics

October 2020

Department of Biology, University of Vermont, Marsh Life Sciences, Burlington, Vermont, USA. Electronic address:

The Discoidin, CUB, and LCCL domain-containing protein (DCBLD) family consists of two type-I transmembrane scaffolding receptors, DCBLD1 and DCBLD2, which play important roles in development and cancer. The nonreceptor tyrosine kinases FYN and ABL are known to drive phosphorylation of tyrosine residues in YXXP motifs within the intracellular domains of DCBLD family members, which leads to the recruitment of the Src homology 2 (SH2) domain of the adaptors CT10 regulator of kinase (CRK) and CRK-like (CRKL). We previously characterized the FYN- and ABL-driven phosphorylation of DCBLD family YXXP motifs.

View Article and Find Full Text PDF

The DCBLD receptor family: emerging signaling roles in development, homeostasis and disease.

Biochem J

March 2019

Department of Biology, University of Vermont, 109 Carrigan Drive, 120A Marsh Life Sciences, Burlington, VT 05405, U.S.A.

The iscoidin, U, and CCL omain-containing (DCBLD) receptor family are composed of the type-I transmembrane proteins DCBLD1 and DCBLD2 (also ESDN and CLCP1). These proteins are highly conserved across vertebrates and possess similar domain structure to that of neuropilins, which act as critical co-receptors in developmental processes. Although DCBLD1 remains largely uncharacterized, the functional and mechanistic roles of DCBLD2 are emerging.

View Article and Find Full Text PDF

Discoidin, CUB, and LCCL domain containing 2 (DCBLD2) is a neuropilin-like transmembrane scaffolding receptor with known and anticipated roles in vascular remodeling and neuronal positioning. DCBLD2 is also up-regulated in several cancers and can drive glioblastomas downstream of activated epidermal growth factor receptor. While a few studies have shown either a positive or negative role for DCBLD2 in regulating growth factor receptor signaling, little is known about the conserved signaling features of DCBLD family members that drive their molecular activities.

View Article and Find Full Text PDF

To evaluate associations by EGFR mutation status for lung adenocarcinoma risk among never-smoking Asian women, we conducted a meta-analysis of 11 loci previously identified in genome-wide association studies (GWAS). Genotyping in an additional 10,780 never-smoking cases and 10,938 never-smoking controls from Asia confirmed associations with eight known single nucleotide polymorphisms (SNPs). Two new signals were observed at genome-wide significance (P < 5 × 10-8), namely, rs7216064 (17q24.

View Article and Find Full Text PDF