Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In order to carry out biological functions, RNA molecules must fold into specific three-dimensional (3D) structures. Current experimental methods to determine RNA 3D structures are expensive and time consuming. With the recent advances in computational biology, RNA structure prediction is becoming increasingly reliable. This chapter describes a recently developed RNA structure prediction software, Vfold, a virtual bond-based RNA folding model. The main features of Vfold are the physics-based loop free energy calculations for various RNA structure motifs and a template-based assembly method for RNA 3D structure prediction. For illustration, we use the yybP-ykoY Orphan riboswitch as an example to show the implementation of the Vfold model in RNA structure prediction from the sequence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762135 | PMC |
http://dx.doi.org/10.1007/978-1-4939-7231-9_1 | DOI Listing |