A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predicting Response to Repetitive Transcranial Magnetic Stimulation in Patients With Schizophrenia Using Structural Magnetic Resonance Imaging: A Multisite Machine Learning Analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The variability of responses to plasticity-inducing repetitive transcranial magnetic stimulation (rTMS) challenges its successful application in psychiatric care. No objective means currently exists to individually predict the patients' response to rTMS.

Methods: We used machine learning to develop and validate such tools using the pre-treatment structural Magnetic Resonance Images (sMRI) of 92 patients with schizophrenia enrolled in the multisite RESIS trial (http://clinicaltrials.gov, NCT00783120): patients were randomized to either active (N = 45) or sham (N = 47) 10-Hz rTMS applied to the left dorsolateral prefrontal cortex 5 days per week for 21 days. The prediction target was nonresponse vs response defined by a ≥20% pre-post Positive and Negative Syndrome Scale (PANSS) negative score reduction.

Results: Our models predicted this endpoint with a cross-validated balanced accuracy (BAC) of 85% (nonresponse/response: 79%/90%) in patients receiving active rTMS, but only with 51% (48%/55%) in the sham-treated sample. Leave-site-out cross-validation demonstrated cross-site generalizability of the active rTMS predictor despite smaller training samples (BAC: 71%). The predictive pre-treatment pattern involved gray matter density reductions in prefrontal, insular, medio-temporal, and cerebellar cortices, and increments in parietal and thalamic structures. The low BAC of 58% produced by the active rTMS predictor in sham-treated patients, as well as its poor performance in predicting positive symptom courses supported the therapeutic specificity of this brain pattern.

Conclusions: Individual responses to active rTMS in patients with predominant negative schizophrenia may be accurately predicted using structural neuromarkers. Further multisite studies are needed to externally validate the proposed treatment stratifier and develop more personalized and biologically informed rTMS interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101524PMC
http://dx.doi.org/10.1093/schbul/sbx114DOI Listing

Publication Analysis

Top Keywords

active rtms
16
repetitive transcranial
8
transcranial magnetic
8
magnetic stimulation
8
patients schizophrenia
8
structural magnetic
8
magnetic resonance
8
machine learning
8
rtms predictor
8
rtms
7

Similar Publications