Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Metal-organic framework (MOF)/polymer composite proton exchange membranes (PEMs) are being intensively investigated due to their potentials for the systematic design of proton-conducting properties. However, the development of MOF/polymer composite PEMs possessing high selectivity remains exceedingly desirable and challenging for practical application. Herein, two-dimensional (2D) zeolitic imidazolate framework (ZIF-8)/carbon nanotube (CNT) hybrid cross-linked networks (ZCN) were synthesized via the rational design of the physical form of ZIF-8, and then a series of composite PEMs were prepared by hybridizing ZCN with sulfonated poly(ether ether ketone) (SPEEK) matrix. The effect of the incorporation of zero-dimensional (0D) raw ZIF-8 nanoparticles and 2D ZCN on the proton conduction and methanol permeability of the composite membranes was systemically studied. Benefiting from the morphological and compositional advantages of ZCN, the SPEEK/ZCN composite membranes displayed a significant enhancement in proton conductivity under various conditions. In particular, the proton conductivity of SPEEK/ZCN-2.5 membrane was up to 50.24 mS cm at 120 °C-30% RH, which was 11.2 times that of the recast SPEEK membrane (4.50 mS cm) and 2.1 times that of SPEEK/ZIF membrane (24.1 mS cm) under the same condition. Meanwhile, the methanol permeability of the SPEEK/ZCN composite membranes was greatly reduced. Therefore, novel MOF/polymer composite PEMs with high selectivity were obtained. Our investigation results reveal that the proton conductivity and methanol permeability of the MOF/polymer composite membranes can be effectively tailored via creating more elaborate superstructures of MOFs rather than altering the chemical component. This effective strategy may provide a useful guideline to integrate with other interesting MOFs to design MOF/polymer composite membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b13013 | DOI Listing |