98%
921
2 minutes
20
In bacteria, small non-coding RNAs (sRNAs) are critical regulators of cellular adaptation to changes in metabolism, physiology, or the external environment. In the last decade, more than 2000 of sRNA families have been reported in the Rfam database and have been shown to exert various regulatory functions in bacterial transcription and translation. However, little is known about sRNAs and their functions in . Here, we predicted putative sRNAs in the intergenic regions (IGRs) of 7653R by genome-wide comparisons with four related Mesorhizobial strains. The expression and transcribed regions of candidate sRNAs were analyzed using a set of high-throughput RNA deep sequencing data. In all, 39 candidate sRNAs were found, with 5 located in the symbiotic megaplasmids and 34 in the chromosome of 7653R. Of these, 24 were annotated as functional sRNAs in the Rfam database and 15 were recognized as putative novel sRNAs. The expression of nine selected sRNAs was confirmed by Northern blotting, and most of the nine selected sRNAs were highly expressed in 28 dpi nodules and under symbiosis-mimicking conditions. For those putative novel sRNAs, functional categorizations of their target genes were performed by analyzing the enriched GO terms. In addition, MH_s15 was shown to be an abundant and conserved sRNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596092 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.01730 | DOI Listing |
mSphere
September 2025
Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.
Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level.
View Article and Find Full Text PDFPNAS Nexus
September 2025
Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
endoribonuclease E (RNase E), encoded by the essential gene and conserved across γ-Proteobacteria, plays a central role in RNA processing and decay. We show here that -null strain, -null strain complemented with catalytic-null RNase E mutant, and C-terminal-truncated strain (Rned500) all lack flagellar biogenesis and motility under both aerobic and anaerobic conditions, which are restored by wild-type RNase E complementation. The Rned500 displays dysregulated expression of the three-tiered flagellar transcriptional cascade, increased stability of flagellar mRNAs, and reduced flagellar protein levels through sRNA-dependent translational inhibition.
View Article and Find Full Text PDFSmall regulatory RNAs (sRNAs) are key drivers of bacterial adaptation to environmental fluctuations, including iron and manganese restriction imposed by the host. This study explored the repertoire of sRNAs produced by the human pathogen in response to metal limitation. Two sRNAs, S1077 and ZinS (RsaX20), regulated by zinc (Zn) availability, were identified.
View Article and Find Full Text PDFPlant Physiol
September 2025
Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
Snapdragon (Antirrhinum majus) exhibits occasional genetic instabilities that manifest as variegations and morphological chimeras. Stabiliser (St) is a historical locus that stabilizes phenotypically unstable or mutable traits in Antirrhinum. Here, we characterized two St loci, the previously described Old Stabiliser (OSt) and New Stabiliser (NSt), that specifically suppress the transposition of the Class II DNA transposable element Tam3 in Antirrhinum.
View Article and Find Full Text PDFMicroorganisms
August 2025
Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, Ueda 386-8567, Nagano, Japan.
Curli fimbriae are a major component of biofilm formation in , and their expression is regulated by numerous transcription factors and small regulatory RNAs (sRNAs). The RcsD-RcsC-RcsB phosphorelay system, which is involved in the envelope stress response, plays a role in this regulation. In this study, we report that DNase-I footprinting analysis revealed that the response regulator RcsB interacts with the -31 to +53 region of the promoter region of , which encodes a major regulator of biofilm formation, and thus contributes to its transcriptional repression.
View Article and Find Full Text PDF