98%
921
2 minutes
20
Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626537 | PMC |
http://dx.doi.org/10.1083/jcb.201612125 | DOI Listing |
Mol Biol Rep
September 2025
Cytogenetics and Molecular Genetics Lab, Pathology Unit, Medical Division (BARC Hospital), Bhabha Atomic Research Centre, Anushakti Nagar, Mumbai, India.
Background: Hearing loss (HL) is one of the most common congenital anomalies and is a complex etiologically diverse condition. Molecular genetic characterization of HL remains challenging owing to the high genetic heterogeneity. This study aimed to screen for potential disease-causing genetic variations in a cohort of Indian patients with congenital bilateral severe-to-profound sensorineural HL.
View Article and Find Full Text PDFNano Today
December 2025
Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA.
Nanomaterials often need to interact with proteins on the plasma membrane to get cross and access their intracellular targets. Therefore, to fully understand the cell entry mechanism, it is of vital importance to gain a comprehensive insight into the proteome at the interface when nanomaterials encounter the cells. Here, we reported a peroxidase-based proximity labeling method to survey the proteome at the nanoparticle (NP)-cell interface.
View Article and Find Full Text PDFJ Cell Sci
September 2025
Department of Biochemistry, University of Illinois at Urbana-Champaign, IL, USA.
We present evidence that the association of Epithelial (E)-cadherin (CHD1) extracellular domain and epidermal growth factor receptor (EGFR, ErbB1) is obligatory for cadherin force transduction signaling. E-cadherin and EGFR associate at cell surfaces, independent of their cytoplasmic domains, and tension on E-cadherin activates EGFR signaling. Using engineered cadherin mutants that disrupt co-immunoprecipitation with EGFR, but not adhesion, we show that the hetero-receptor complex is required to mechanically activate signaling and downstream cytoskeletal remodeling at cadherin adhesions.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
α-Caryophyllene is a natural condiment and flavoring additive. Herein, we first study the in vivo and in vitro anti-lung cancer efficacy of α-caryophyllene and its potential mechanism. In antitumor activity in vitro, α-caryophyllene exhibited obvious selective cytotoxicity, and its cytotoxicity against lung cancer A549 cells (IC = 22.
View Article and Find Full Text PDFCommun Biol
September 2025
University of Münster, Institute of Integrative Cell Biology and Physiology, Münster, Germany.
The formation and maintenance of epithelia is critical for animal development and survival. Central to epithelial integrity are cadherin-based complexes called adherens junctions (AJs), which form physically robust but inherently dynamic cell-cell adhesions. How AJs function at the molecular level remains incompletely understood because techniques to study the central AJ proteins within the dynamic adhesion structure are scarce.
View Article and Find Full Text PDF