Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Paper focuses on biomechanics, specifically on locking cortical bone screws in angularly stable plates used for the treatment of bone fractures in the medical fields of traumatology and orthopaedics. During extraction of titanium-alloy implants, problems are encountered in an effort to loosen some locking bone screws from the locking holes of an angularly stable plate and the subsequent stripping of the internal hexagon of the screw head. The self-locking of the screw-plate threaded joint was verified by calculation and the effect of the angle of the thread on the head of the locking cortical bone screw on self-locking was evaluated. The magnitude of the torque, causing the stripping of the internal hexagon (the Inbus type head) of a locking cortical bone screw with a shank diameter of 3.5 mm from Ti6Al4 V titanium alloy to ISO 5832-3, was determined experimentally. Also, it was experimentally found that the rotation of the screwdriver end with a hexagonal tip inside the locking cortical bone screw head during stripping of the internal hexagon causes strain of the screw head perimeter and thereby an increase of thread friction. The effect of tightening torque on the possibility of loosening of the locking cortical bone screw from the locking hole of an angularly stable plate was assessed experimentally. From the evaluation of five alternative shapes of locking cortical bone screw heads in terms of the acting stress and generated strains, it follows that the best screw is the screw with the Torx type head, which demonstrates the lowest values of reduced stress and equivalent plastic strain. Based on experiments and simulations the authors recommend that all global producers of locking cortical bone screws for locking holes of angularly stable plates use the Torx type heads, and not heads of the Inbus type or the Square, PH, PZ types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562784 | PMC |
http://dx.doi.org/10.1007/s40846-017-0279-4 | DOI Listing |