98%
921
2 minutes
20
We have recently reported that antioxidant supplements enhance the efficacy of cryopreserved spermatogonial stem cells. Melatonin is considered a free radical scavenger which has direct and indirect antioxidant effects in in vitro and in vivo microenvironments. Due to the anti-apoptotic properties of melatonin, researchers have proposed that melatonin may improve the efficiency of spermatogonial stem cell (SSC) transplantation. However, the appropriate methodology which facilitates SSC proliferation remains to be determined. Identification of a proper propagation system is essential for the future application of SSCs in the field of infertility. The aim of the present study was to investigate the effects of melatonin on the colonization of SSCs. SSCs were isolated from the testes of three to six day old mice, and their purities were assessed by cytometry using Plzf antibody. Isolated testicular cells were cultured in the absence or presence of melatonin extract for two weeks. Suppression of differentiation and maintenance of spermatogonial stem cells was confirmed by alkaline phosphatase staining and immunocytochemistry using Plzf antibody. The number and diameter of the colonies of SSCs were assessed during the 7 and 14 days of culture, and the expression of Id4, Plzf, and C-kit were evaluated using real-time PCR at the end of the culture period. The survival rate of the cultured cells in the presence of melatonin was significantly higher than the control group. The number and diameter of colonies also increased in the cells treated with melatonin. The results of our study suggest that culture of SSCs with 100 μM melatonin supplementation can increase SSCs proliferation significantly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19396368.2017.1358774 | DOI Listing |
Stem Cell Res Ther
September 2025
Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Background: Platelet-rich plasma (PRP) and its subtype, plasma rich in growth factors (PRGF), are autologous blood-derived products that have garnered increasing attention as personalized therapeutic tools in the field of male fertility. This systematic review aims to evaluate the current in vitro and in vivo evidence regarding the potential applications of platelet-derived products in various domains of male reproductive health, including in vitro spermatogenesis, sperm preservation, treatment of male infertility, mitigation of testicular toxicity, and management of testicular torsion/detorsion (T/D) injury.
Strategy: This review was conducted in accordance with PRISMA guidelines and was prospectively registered in PROSPERO.
Reprod Sci
September 2025
Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India.
Male infertility remains a significant global reproductive health challenge, frequently attributed to genetic mutations impairing spermatogenesis and sperm function. This narrative review aims to explore the genetic and molecular underpinnings of male infertility and evaluate the emerging role of Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR/Cas9) genome editing as a diagnostic and therapeutic tool, while addressing its associated ethical, technical, and safety considerations. A Comprehensive literature search was conducted across PubMed, Scopus, Web of Science databases, covering studies published between September 1992 and April 2025.
View Article and Find Full Text PDFCell Mol Life Sci
September 2025
Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 410000, Shenzhen, China.
Non-obstructive azoospermia (NOA) is a leading cause of male infertility, characterized by impaired spermatogenesis. Recent studies suggest that ferroptosis, an iron-dependent form of cell death, may contribute to testicular dysfunction, however, its role in NOA remains underexplored. In this study, we investigated the roles of NUPR1 and MYC in regulating ferroptosis in human spermatogonial stem cells (SSCs) and evaluated their potential as therapeutic targets for NOA.
View Article and Find Full Text PDFEcotoxicol Environ Saf
August 2025
Department of Reproductive Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China. Electronic address:
Although dietary factors are increasingly implicated as crucial determinants of male fertility, specific dietary risk factors and their metabolic mechanisms remain poorly understood. In this study, patients with non-obstructive azoospermia (NOA) or severe oligospermia (EO) demonstrated significantly elevated erucic acid (EA) levels, with a nearly 3-fold increase in serum (P < 0.0001) and a 27 % increase in semen (P = 0.
View Article and Find Full Text PDFAntioxidants (Basel)
July 2025
Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved in SSC function.
Methods: SSCs were enriched from human orchiectomy samples using CD49f-based magnetic-activated cell sorting (MACS) and laminin-binding matrix selection.