Critical evaluation of distillation procedure for the determination of methylmercury in soil samples.

Chemosphere

Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile. Electronic address:

Published: November 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the present work, the efficiency of distillation process for extracting monomethylmercury (MMHg) from soil samples was studied and optimized using an experimental design methodology. The influence of soil composition on MMHg extraction was evaluated by testing of four soil samples with different geochemical characteristics. Optimization suggested that the acid concentration and the duration of the distillation process were most significant and the most favorable conditions, established as a compromise for the studied soils, were determined to be a 70 min distillation using an 0.2 M acid. Corresponding limits of detection (LOD) and quantification (LOQ) were 0.21 and 0.7 pg absolute, respectively. The optimized methodology was applied with satisfactory results to soil samples and was compared to a reference methodology based on isotopic dilution analysis followed by gas chromatography-inductively coupled plasma mass spectrometry (IDA-GC-ICP-MS). Using the optimized conditions, recoveries ranged from 82 to 98%, which is an increase of 9-34% relative to the previously used standard operating procedure. Finally, the validated methodology was applied to quantify MMHg in soils collected from different sites impacted by coal fired power plants in the north-central zone of Chile, measuring MMHg concentrations ranging from 0.091 to 2.8 ng g. These data are to the best of our knowledge the first MMHg measurements reported for Chile.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.08.034DOI Listing

Publication Analysis

Top Keywords

soil samples
16
distillation process
8
methodology applied
8
soil
5
mmhg
5
critical evaluation
4
distillation
4
evaluation distillation
4
distillation procedure
4
procedure determination
4

Similar Publications

Background: Clubroot, caused by Plasmodiophora brassicae, significantly impacts cruciferous crop production worldwide. Biocontrol is an environmentally friendly and promising approach for clubroot management. Endophytic bacteria are known for their ability to promote plant growth and induce resistance against plant diseases.

View Article and Find Full Text PDF

Dust palliatives are used to reduce fugitive dust in areas susceptible to erosion by wind and rain. In 2015, the Bureau of Land Management (BLM) temporarily approved the use of polymer-based dust palliatives during the construction and operation of a solar energy facility and, in 2019, on a mining access road in Clark County, Nevada. The areas treated with palliative are habitat to the desert tortoise.

View Article and Find Full Text PDF

Multi-component tree biomass approach to estimate litterfall Hg deposition in a warm-temperate coniferous forest in southern Europe.

Environ Res

September 2025

Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias,32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, 32004 Ourense, Spain. Electronic address: edjuanca@uv

Terrestrial ecosystems are a key component in the biogeochemical cycle of Hg. About 50% of atmospheric Hg is captured in the system because of the ability of vegetation to retain and subsequently transfer it to the soil surface through litterfall. In a stand dominated by Scots pine (Pinus sylvestris), the widest spatially distributed tree species in the northern hemisphere and the second worldwide, this two-year study evaluated monthly the litterfall Hg deposition fluxes (FHg) through all litterfall fractions involved (needles, twigs, bark, miscellaneous, and male inflorescences).

View Article and Find Full Text PDF

Molecular characteristics of halogenated disinfection byproducts elucidated by Fourier transform ion cyclotron resonance mass spectrometry.

Environ Pollut

September 2025

Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China. Electronic address:

Dissolved organic matter is the main precursor for the formation of halogenated disinfection by-products (X-DBPs) during the disinfection of drinking water. However, the majority of the X-DBPs identified based on the artificially prepared water using the Suwannee River Natural Organic Matter (SRNOM) will bias the assessment of X-DBP formation potential in actual natural water. Herein, the non-targeted analysis based on ultrahigh-resolution mass spectrometry was employed to reveal the discrepancy in the molecular composition of X-DBPs and their precursors in SRNOM solution and actual authentic samples during disinfection.

View Article and Find Full Text PDF

Rugged LC-MS/MS method for the large-scale monitoring of glyphosate and other highly polar pesticides in soils across European Union olive orchards.

Environ Pollut

September 2025

Universidad de Jaén, Analytical Chemistry Research Group (FQM 323), Departamento de Química Física y Analítica, Campus Las Lagunillas Edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), Universidad de Jaén, Jaén, Spain.

Glyphosate (GLY) is the most widely used herbicide globally. Despite concerns regarding its potential adverse effects on human health and the environment, its use continues to grow each year. Following application, a substantial proportion of glyphosate infiltrates the soil, where it can degrade into transformation products such as aminomethylphosphonic acid (AMPA), which is much more persistent than the parent compound.

View Article and Find Full Text PDF