98%
921
2 minutes
20
To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566882 | PMC |
http://dx.doi.org/10.1098/rstb.2016.0384 | DOI Listing |
Plant Cell Environ
September 2025
College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China.
Selenium and boron can alleviate lead (Pb) toxicity in plants, but their stress resistance mechanisms in tobacco remain unclear. The aim of this study was to investigate the effects of Se/B application on lead-induced oxidative stress, subcellular distribution, cell wall properties, and Pb accumulation. Additionally, a comprehensive analysis of transcriptomics and metabolomics data was conducted.
View Article and Find Full Text PDFNat Plants
September 2025
Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
A new Escherichia coli laboratory evolution screen for detecting plant ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) mutations with enhanced CO-fixation capacity has identified substitutions that can enhance plant productivity. Selected were a large subunit catalytic (Met-116-Leu) mutation that increases the k of varying plant Rubiscos by 25% to 40% and a solubility (Ala-242-Val) mutation that improves plant Rubisco biogenesis in E. coli 2- to 10-fold.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
Genome doubling did not enhance drought tolerance in alfalfa, but may set the stage for long-term adaptation to drought through a novel transcriptional landscape. Whole genome duplication (WGD) has been shown to enhance stress tolerance in plants. Cultivated alfalfa is autotetraploid, but diploid wild relatives are important sources of genetic variation for breeding.
View Article and Find Full Text PDFJ Pineal Res
September 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.
View Article and Find Full Text PDFPlant Sci
September 2025
Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello15/a, 10135 Turin, Italy.
Cerium (Ce), the most abundant of the rare Earth elements (REEs), is increasingly recognized as an environmental contaminant due to its growing applications in various industrial and agricultural sectors. This study investigates the physiological, biochemical, and molecular responses of Brassica rapa L. plants to varying concentrations of Ce exposure to elucidate its effects on plant growth, metabolism, and stress responses.
View Article and Find Full Text PDF