Investigation of horizontal gene transfer of pathogenicity islands in Escherichia coli using next-generation sequencing.

PLoS One

Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, München, Germany.

Published: September 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Horizontal gene transfer (HGT) contributes to the evolution of bacteria. All extraintestinal pathogenic Escherichia coli (ExPEC) harbour pathogenicity islands (PAIs), however relatively little is known about the acquisition of these PAIs. Due to these islands, ExPEC have properties to colonize and invade its hosts efficiently. Even though these PAIs are known to be acquired by HGT, only very few PAIs do carry mobilization and transfer genes required for the transmission by HGT. In this study, we apply for the first time next-generation sequencing (NGS) and in silico analyses in combination with in vitro experiments to decipher the mechanisms of PAI acquisition in ExPEC. For this, we investigated three neighbouring E. coli PAIs, namely the high-pathogenicity island (HPI), the pks and the serU island. As these PAIs contain no mobilization and transfer genes, they are immobile and dependent on transfer vehicles. By whole genome sequencing of the entire E. coli reference (ECOR) collection and by applying a phylogenetic approach we could unambiguously demonstrate that these PAIs are transmitted not only vertically, but also horizontally. Furthermore, we could prove in silico that distinct groups of PAIs were transferred "en bloc" in conjunction with the neighbouring chromosomal backbone. We traced this PAI transfer in vitro using an F' plasmid. Different lengths of transferred DNA were exactly detectable in the sequenced transconjugants indicating NGS as a powerful tool for determination of PAI transfer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5521745PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179880PLOS

Publication Analysis

Top Keywords

horizontal gene
8
gene transfer
8
pathogenicity islands
8
escherichia coli
8
next-generation sequencing
8
pais
8
mobilization transfer
8
transfer genes
8
pai transfer
8
transfer
7

Similar Publications

Genomic and morphological characterization of a novel iridovirus, bivalve iridovirus 1 (BiIV1), infecting the common cockle ().

Microb Genom

September 2025

International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.

High rates of mortality of the common cockle, , have occurred in the Wash Estuary, UK, since 2008. A previous study linked the mortalities to a novel genotype of , with a strong correlation between cockle moribundity and the presence of . Here, we characterize a novel iridovirus, identified by chance during metagenomic sequencing of a gradient purification of cells, with the presence also correlated to cockle moribundity.

View Article and Find Full Text PDF

Cytoplasmic Incompatibility (CI) causes embryonic lethality in arthropods, resulting in a significant reduction in reproductive success. In most cases, this reproductive failure is driven by Wolbachia endosymbionts through their cifA/cifB gene pair, whose products disrupts arthropod DNA replication during embryogenesis. While a cif pair has been considered a hallmark of Wolbachia, its presence and functional significance in other bacterial lineages remains poorly investigated.

View Article and Find Full Text PDF

Controlling the Taxonomic Composition of Biological Information Storage in 16S rRNA.

ACS Synth Biol

September 2025

Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States.

Microbes can be programmed to record participation in gene transfer by coding biological-recording devices into mobile DNA. Upon DNA uptake, these devices transcribe a catalytic RNA (cat-RNA) that binds to conserved sequences within ribosomal RNAs (rRNAs) and perform a trans-splicing reaction that adds a barcode to the rRNAs. Existing cat-RNA designs were generated to be broad-host range, providing no control over the organisms that were barcoded.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) and cardiogenic stroke (CS) are harmful to human health. Previous studies have shown a correlation between T2DM and CS, but the causal relationships and pathogenic mechanisms between T2DM and CS remain unclear. We downloaded T2DM and CS datasets from a genome-wide Association Study and performed Mendelian randomization (MR) analysis using the TwoSampleMR package in R software.

View Article and Find Full Text PDF

Background: Although previous studies suggested associations between psoriasis and atopic dermatitis (AD), the directionality and causality of these relationships remain controversial. This study employed bidirectional Mendelian randomization to investigate the potential causal relationships between these two inflammatory skin conditions.

Methods: Genome-wide association statistics were obtained for psoriasis and AD from large-scale consortia and meta-analyses of genome-wide association studies.

View Article and Find Full Text PDF