98%
921
2 minutes
20
biofilms have a fundamental role in shaping the soil ecosystem. During this process, they unavoidably interact with neighbour bacterial species. We studied the interspecies interactions between biofilms of the soil-residing bacteria and related species. We found that proximity between the biofilms triggered recruitment of motile cells, which engulfed the competing colony. Upon interaction, secreted surfactin and cannibalism toxins, at concentrations that were inert to itself, which eliminated the colony, as well as colonies of . Surfactin toxicity was correlated with the presence of short carbon-tail length isomers, and synergistic with the cannibalism toxins. Importantly, during biofilm development and interspecies interactions a subpopulation in biofilm lost its native plasmid, leading to increased virulence against the competing species. Overall, these findings indicate that genetic programs and traits that have little effect on biofilm development when each species is grown in isolation have a dramatic impact when different bacterial species interact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515258 | PMC |
http://dx.doi.org/10.1038/npjbiofilms.2015.27 | DOI Listing |
Nat Protoc
September 2025
Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Structural biology is fundamental to understanding the molecular basis of biological processes. While machine learning-based protein structure prediction has advanced considerably, experimentally determined structures remain indispensable for guiding structure-function analyses and for improving predictive modeling. However, experimental studies of protein complexes continue to pose challenges, particularly due to the necessity of high protein concentrations and purity for downstream analyses such as cryogenic electron microscopy.
View Article and Find Full Text PDFMol Syst Biol
September 2025
TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms.
View Article and Find Full Text PDFEMBO Rep
September 2025
Max Planck Unit for the Science of Pathogens, Berlin, D-10117, Germany.
The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel University, Kiel, Schleswig-Holstein, Germany.
Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan.
The maternal microbiome during pregnancy and the peripartum period plays a critical role in maternal health outcomes and establishing the neonatal gut microbiome, with long-term implications for offspring health. However, a healthy microbiome during these key periods has not been definitively characterized. This longitudinal study examines maternal and neonatal microbiomes using 16S rRNA amplicon sequencing in a Japanese cohort throughout pregnancy and the postpartum period.
View Article and Find Full Text PDF