Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Freezing stress substantially reduces crop yields and limits plant distribution. The identification of genes critical for cold acclimation is thus of great importance. C-repeat binding factors (CBFs) are transcription factors that play key regulatory roles in the cold acclimation process, which dramatically increases freezing tolerance in plants. We report here that B. distachyon can successfully cold acclimate and we identified a CBF gene family consisting of eight genes in a tandem array and are designated as BdCBF1-8. Expression analysis indicated that all the eight BdCBF genes are induced by cold. Freezing tolerance experiments showed that the knockdown of BdCBF3 gene in RNAi cbf3 mutant plants results in a significant reduction in survival after an exposure to freezing temperatures. RNA-seq transcriptomic analysis was conducted using the wild type and cbf3 mutant plants under both normal and cold conditions. We identified 460, 3213, 2839 and 1871 differentially expressed genes exhibiting different expression levels by pairwise comparisons of cbf3 (23°C) vs. WT (23°C), WT (23°C) vs. WT (4°C), cbf3 (23°C) vs. cbf3 (4°C), and cbf3 (4°C) vs. WT (4°C), respectively. These differentially expressed genes were enriched in several biological pathways. Combined analyses of differentially expressed genes in some of the enriched pathways provide insights into mechanisms of plant response to cold in the BdCBF3-dependent, -independent or -compensatory categories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2017.06.001 | DOI Listing |