Rechargeable Aluminum-Ion Batteries Based on an Open-Tunnel Framework.

Small

Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Published: September 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rechargeable batteries based on an abundant metal such as aluminum with a three-electron transfer per atom are promising for large-scale electrochemical energy storage. Aluminum can be handled in air, thus offering superior safety, easy fabrication, and low cost. However, the development of Al-ion batteries has been challenging due to the difficulties in identifying suitable cathode materials. This study presents the use of a highly open framework Mo VO as a cathode for Al-ion batteries. The open-tunnel oxide allows a facile diffusion of the guest species and provides sufficient redox centers to help redistribute the charge within the local host lattice during the multivalent-ion insertion, thus leading to good rate capability with a specific capacity among the highest reported in the literature for Al-based batteries. This study also presents the use of Mo VO as a model host to develop a novel ultrafast technique for chemical insertion of Al ions into host structures. The microwave-assisted method employing diethylene glycol and aluminum diacetate (Al(OH)(C H O ) ) can be performed in air in as little as 30 min, which is far superior to the traditional chemical insertion techniques involving moisture-sensitive organometallic reagents. The Al-inserted Al Mo VO obtained by the microwave-assisted chemical insertion can be used in Al-based rechargeable batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201701296DOI Listing

Publication Analysis

Top Keywords

chemical insertion
12
batteries based
8
rechargeable batteries
8
al-ion batteries
8
study presents
8
batteries
6
rechargeable aluminum-ion
4
aluminum-ion batteries
4
based open-tunnel
4
open-tunnel framework
4

Similar Publications

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its superior sodium storage performance. However, the high cost of conventional HC precursors remains a critical challenge. To address this, coal─a low-cost, carbon-rich precursor─has been explored for HC synthesis.

View Article and Find Full Text PDF

A synthetic method has been developed for the diastereoselective domino synthesis of indolyl-pyrrolo[2,1-]isoindoles from phthalimide-derived -sulfonyl-1,2,3-triazoles and indoles. The reaction proceeds ring chain isomerization of triazoles to give α-imino diazo compounds. Then, denitrogenative generation of α-imino Rh(II) carbenes followed by intramolecular oxygen insertion and nucleophilic addition of indoles delivers the indolyl-pyrrolo[2,1-]isoindoles.

View Article and Find Full Text PDF

Herein, we report an Ir(III)-catalyzed regioselective C-H acylmethylation of indolizines with β-ketosulfoxonium ylides, enabling the efficient synthesis of C3-functionalized indolizine derivatives. By modifying the reaction conditions, a controllable Ir(III)-catalyzed dicarbonylation of the same substrates was also achieved. In this transformation, β-ketosulfoxonium ylides serve as a rare alternative to conventional oxophenacyl halides.

View Article and Find Full Text PDF

Kraft lignin (KL) is a byproduct of the pulp and paper industry and has been extensively used in several high-value-added applications. The aim of this study was to evaluate the potential of phosphorylated Kraft lignins obtained by different reaction conditions (e.g.

View Article and Find Full Text PDF

Sub-2 nm platinum nanocluster decorated on yttrium hydroxide as highly active and robust self-supported electrocatalyst for industrial-current alkaline hydrogen evolution.

J Colloid Interface Sci

September 2025

State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

Downsizing Pt particles and incorporating water dissociation site represents a promising strategy for maximizing atomic utilization efficiency and enhancing catalytic performance in Pt-based hydrogen evolution reaction (HER) electrocatalysts. Here, we present a self-supported Pt/Y(OH) electrocatalyst through a synergistic combination of anion insertion-enhanced electrodeposition and chemical deposition at ambient temperature. The resultant architecture features sub-2 nm Pt nanoclusters (with an average diameter of 1.

View Article and Find Full Text PDF