A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Three-Dimensional Bio-Printed Scaffold Sleeves With Mesenchymal Stem Cells for Enhancement of Tendon-to-Bone Healing in Anterior Cruciate Ligament Reconstruction Using Soft-Tissue Tendon Graft. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To investigate the efficacy of the insertion of 3-dimensional (3D) bio-printed scaffold sleeves seeded with mesenchymal stem cells (MSCs) to enhance osteointegration between the tendon and tunnel bone in anterior cruciate ligament (ACL) reconstruction in a rabbit model.

Methods: Scaffold sleeves were fabricated by 3D bio-printing. Before ACL reconstruction, MSCs were seeded into the scaffold sleeves. ACL reconstruction with hamstring tendon was performed on both legs of 15 adult rabbits (aged 12 weeks). We implanted 15 bone tunnels with scaffold sleeves with MSCs and implanted another 15 bone tunnels with scaffold sleeves without MSCs before passing the graft. The specimens were harvested at 4, 8, and 12 weeks. H&E staining, immunohistochemical staining of type II collagen, and micro-computed tomography of the tunnel cross-sectional area were evaluated. Histologic assessment was conducted with a histologic scoring system.

Results: In the histologic assessment, a smooth bone-to-tendon transition through broad fibrocartilage formation was identified in the treatment group, and the interface zone showed abundant type II collagen production on immunohistochemical staining. Bone-tendon healing histologic scores were significantly higher in the treatment group than in the control group at all time points. Micro-computed tomography at 12 weeks showed smaller tibial (control, 9.4 ± 0.9 mm; treatment, 5.8 ± 2.9 mm; P = .044) and femoral (control, 9.6 ± 2.9 mm; treatment, 6.0 ± 1.0 mm; P = .03) bone-tunnel areas in the treated group than in the control group.

Conclusions: The 3D bio-printed scaffold sleeve with MSCs exhibited excellent results in osteointegration enhancement between the tendon and tunnel bone in ACL reconstruction in a rabbit model.

Clinical Relevance: If secure biological healing between the tendon graft and tunnel bone can be induced in the early postoperative period, earlier, more successful rehabilitation may be facilitated. Three-dimensional bio-printed scaffold sleeves with MSCs have the potential to accelerate bone-tendon healing in ACL reconstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arthro.2017.04.016DOI Listing

Publication Analysis

Top Keywords

scaffold sleeves
28
acl reconstruction
20
bio-printed scaffold
16
tunnel bone
12
sleeves mscs
12
three-dimensional bio-printed
8
scaffold
8
mesenchymal stem
8
stem cells
8
anterior cruciate
8

Similar Publications