98%
921
2 minutes
20
The Andean uplift is one of the major orographic events in the New World and has impacted considerably the diversification of numerous Neotropical lineages. Despite its importance for biogeography, the specific role of mountain ranges as a dispersal barrier between South and Central American lowland plant lineages is still poorly understood. The swan orchids (Cycnoches) comprise ca 34 epiphytic species distributed in lowland and pre-montane forests of Central and South America. Here, we study the historical biogeography of Cycnoches to better understand the impact of the Andean uplift on the diversification of Neotropical lowland plant lineages. Using novel molecular sequences (five nuclear and plastid regions) and twelve biogeographic models, we infer that the most recent common ancestor of Cycnoches originated in Amazonia ca 5 Mya. The first colonization of Central America occurred from a direct migration event from Amazonia, and multiple bidirectional trans-Andean migrations between Amazonia and Central America took place subsequently. Notably, these rare biological exchanges occurred well after major mountain building periods. The Andes have limited plant migration, yet it has seldom allowed episodic gene exchange of lowland epiphyte lineages such as orchids with great potential for effortless dispersal because of the very light, anemochorous seeds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501825 | PMC |
http://dx.doi.org/10.1038/s41598-017-04261-z | DOI Listing |
Patterns (N Y)
July 2025
L3S Research Center, Leibniz University Hannover, Hannover, Germany.
OpenML is an open-source platform that democratizes machine-learning evaluation by enabling anyone to share datasets in uniform standards, define precise machine-learning tasks, and automatically share detailed workflows and model evaluations. More than just a platform, OpenML fosters a collaborative ecosystem where scientists create new tools, launch initiatives, and establish standards to advance machine learning. Over the past decade, OpenML has inspired over 1,500 publications across diverse fields, from scientists releasing new datasets and benchmarking new models to educators teaching reproducible science.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China.
Here, we explore the long-term history of chemical weathering and particle transport from the continents to the oceans by leveraging the histories of Zr/Al, Rb/Al, and Na/Al in marine sediments over the last 2000 My. We interpret these data in the context of elemental behavior in modern weathering environments and modern marine sediments. We find that from 2000 Mya to ca.
View Article and Find Full Text PDFTerr Atmos Ocean Sci
August 2025
Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan 701, Taiwan (ROC).
Given the pressures on water resources caused by global climate change and human activities, the assessment and management of groundwater resources in mountainous region have become increasingly important. The central mountainous region of Taiwan, as one of the significant sources of groundwater recharge, plays a critical role in overall water resource management due to its groundwater storage capacity and recharge capability. Addressing the challenges of limited survey and observational data in mountainous groundwater assessments, this study uses the lumped parameter groundwater model AquiMod to analyze long-term groundwater level changes at 23 monitoring stations in mountainous areas of central Taiwan.
View Article and Find Full Text PDFSci Robot
September 2025
Google DeepMind, London, UK.
Modern robotic manufacturing requires collision-free coordination of multiple robots to complete numerous tasks in shared, obstacle-rich workspaces. Although individual tasks may be simple in isolation, automated joint task allocation, scheduling, and motion planning under spatiotemporal constraints remain computationally intractable for classical methods at real-world scales. Existing multiarm systems deployed in industry rely on human intuition and experience to design feasible trajectories manually in a labor-intensive process.
View Article and Find Full Text PDF