A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we propose a facile route to fabricate a metal insulator multilayer stack to obtain ultra-broadband, wide angle behavior from the structure. The absorber, which covers near infrared (NIR) and visible (Vis) ranges, consists of a metal-insulator-metal-insulator (MIMI) multilayer where the middle metal layer has a variant thickness. It is found that this non-uniform thickness of the metal provides us with an absorption that is much broader compared to planar architecture. In the non-uniform case, each thickness is responsible for a specific wavelength range where the overall absorption is the superposition of these resonant responses and consequently a broad, perfect light absorption is attained. We first numerically examine the impact of different geometries on the overall light absorption property of the multilayer design. Afterward, we fabricate the designs and characterize them to experimentally verify our numerical findings. Characterizations show a good agreement with numerical results where the optimum absorption bandwidth for planar design is found to be 620 nm (380 nm-1000 nm) and it is significantly boosted to an amount of 1060 nm (350 nm-1410 nm) for multi-thickness case.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500529PMC
http://dx.doi.org/10.1038/s41598-017-04964-3DOI Listing

Publication Analysis

Top Keywords

ultra-broadband wide
8
wide angle
8
metal insulator
8
light absorption
8
metal
5
absorption
5
angle absorber
4
absorber utilizing
4
utilizing metal
4
insulator multilayers
4

Similar Publications