A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integration of solid-state nanopores into a functional device designed for electrical and optical cross-monitoring. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a new strategy for fabricating a silicon nanopore device allowing straightforward fluidic integration and electrical as well as optical monitoring. The device presents nanopores of diameters 10 nm to 160 nm, and could therefore be used to obtain solvent-free free-standing lipid bilayers from small unilamellar vesicles (SUV) or large unilamellar vesicles (LUV). The silicon chip fabrication process only requires front side processing of a silicon-on-insulator (SOI) substrate. A polydimethylsiloxane (PDMS) microfluidic interface is assembled on the silicon chip for fluidic handling and electrical addressing. We detail the electrical specifications of our device and some perspectives showing that the use of an SOI substrate is a convenient way to reduce the electrical noise in a silicon nanopore device without the need of a photolitographic patterned passivation layer. We then demonstrate simultaneous electrical and optical monitoring by capturing negatively charged fluorescent nanoparticles. Finally, in the perspective of solvent-free free-standing lipid bilayers, we show that incubation of SUV results in a drastic increase of the device electrical resistance, which is likely due to the formation of a free-standing lipid bilayer sealing the nanopores. Graphical abstract ᅟ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-017-0195-yDOI Listing

Publication Analysis

Top Keywords

free-standing lipid
12
electrical optical
8
silicon nanopore
8
nanopore device
8
optical monitoring
8
solvent-free free-standing
8
lipid bilayers
8
unilamellar vesicles
8
silicon chip
8
soi substrate
8

Similar Publications